Recent advances in phylogenomics allow for the use of large amounts of genetic information in phylogenetic inference. Ideally, the increased resolution and accuracy of such inferences facilitate improved understanding of macroevolutionary processes. Here, we integrate ultraconserved elements (UCEs) with fossil and biogeographic range data to explore diversification and geographic range evolution in the diverse turtle ant genus Cephalotes Latreille, 1802 (Hymenoptera: Formicidae). We focus on the potential role of the uplift of the Panamanian land bridge and the putative ephemeral GAARlandia land bridge linking South America and the Antilles in shaping evolution in this group. Our phylogenetic analyses provide new resolution to the backbone of the turtle ant phylogeny. We further found that most geographic range shifts between South America and Central America regions were temporally consistent with the development of the Panamanian land bridge, while we did not find support for the GAARlandia land bridge. Additionally, we did not infer any shifts in diversification rates associated with our focal land bridges, or any other historical events (we inferred a single diversification rate regime across the genus). Our findings highlight the impact of the Panamanian land bridge for Cephalotes geographic range evolution as well as the influence of taxonomic sampling on macroevolutionary inferences.
Home » Phylogenomics and Fossil Data Inform the Systematics and Geographic Range Evolution of a Diverse Neotropical Ant Lineage
Publications
Phylogenomics and Fossil Data Inform the Systematics and Geographic Range Evolution of a Diverse Neotropical Ant Lineage
myBaits
Daicel Arbor Biosciences
5840 Interface Dr. Suite 101,
Ann Arbor, MI 48103
1.734.998.0751Ann Arbor, MI 48103
©2024 Biodiscovery LLC
(d/b/a Daicel Arbor Biosciences)
All Rights Reserved.
(d/b/a Daicel Arbor Biosciences)
All Rights Reserved.
Design and development by Raincastle Communications.