Gathering genomic-scale data efficiently is challenging for nonmodel species with large, complex genomes. Transcriptome sequencing is accessible for organisms with large genomes, and sequence capture probes can be designed from such mRNA sequences to enrich and sequence exonic regions. Maximizing enrichment efficiency is important to reduce sequencing costs, but relatively few data exist for exon capture experiments in nonmodel organisms with large genomes. Here, we conducted a replicated factorial experiment to explore the effects of several modifications to standard protocols that might increase sequence capture efficiency for amphibians and other taxa with large, complex genomes. Increasing the amounts of c0t-1 repetitive sequence blocker and individual input DNA used in target enrichment reactions reduced the rates of PCR duplication. This reduction led to an increase in the percentage of unique reads mapping to target sequences, essentially doubling overall efficiency of the target capture from 10.4% to nearly 19.9% and rendering target capture experiments more efficient and affordable. Our results indicate that target capture protocols can be modified to efficiently screen vertebrates with large genomes, including amphibians.
Home » Exon capture optimization in amphibians with large genomes
Publications
Exon capture optimization in amphibians with large genomes
myBaits
Daicel Arbor Biosciences
5840 Interface Dr. Suite 101,
Ann Arbor, MI 48103
1.734.998.0751Ann Arbor, MI 48103
©2024 Biodiscovery LLC
(d/b/a Daicel Arbor Biosciences)
All Rights Reserved.
(d/b/a Daicel Arbor Biosciences)
All Rights Reserved.
Design and development by Raincastle Communications.