The evolutionary history of fungus-farming ants has been the subject of multiple morphological, molecular phylogenetic, and phylogenomic studies. Due to its rarity, however, the phylogenetic position, natural history, and fungal associations of the monotypic genus Paramycetophylax Kusnezov have remained enigmatic. Here we report the first excavations of colonies of Paramycetophylax bruchi (Santschi) and describe its nest architecture and natural history. Utilizing specimens from these collections, we generated ultraconservedelement (UCE) data to determine the evolutionary position of Paramycetophylax within the fungus-farming ants and ribosomal ‘fungal barcoding’ ITS sequence data to identify the fungal cultivar. A maximum-likelihood phylogenomic analysis indicates that the genus Paramycetophylax is the sister group of the yeast-cultivating Cyphomyrmex rimosus group, an unexpected result that renders the genus Cyphomyrmex Mayr paraphyletic. A Bayesian divergence-dating analysis indicates that Paramycetophylax diverged from its sister group around 36 mya (30–42 mya, HPD) in the late Eocene-early Oligocene, a period of global cooling, expansion of grasslands, and large-scale extinction of tropical organisms. Bayesian analysis of the fungal cultivar ITS gene fragment indicates that P. bruchi practices lower agriculture and that the cultivar grown by P. bruchi belongs to the Clade 1 group of lower-attine fungi, a clade that, interestingly, also includes the C. rimosus-group yeast cultivars. Based on these results, we conclude that a better understanding of P. bruchi and its fungal cultivar, including whole-genome data, is critical for reconstructing the origin of yeast agriculture, a major transition in the evolution of fungus-farming ants.