We always recommend keeping the thawing-and-freezing cycles as low as possible which might require aliquoting the original sample. However, myTXTL GamS Protein can be subjected to at least five thawing-and-freezing cycles.
PCR products can be directly used as DNA template for cell-free expression so long as the final glycerol concentration in the reaction is 0.1% or lower and the PCR reactions on average are making enough linear DNA to facilitate the protein yield needed. If a known fixed template concentration is preferred, PCR products should be subjected to a standard PCR clean up procedure with a final elution in molecular biology grade, nuclease-free water. This might also slightly boost the protein yield per reaction. Linear DNA can also be ordered and used directly in myTXTL from several commercial DNA suppliers. Please refer to the applicable myTXTL manual and our Application Note with IDT for information about linear DNA template design requirements, or reach out to techsupport@arbor.daicel.com with questions about specific sequence recommendations.
Unfortunately, this may lead to considerably decreased performance or even loss of function. To ensure highest kit performance, make sure to store the myTXTL cell-free protein expression kit master mix at -80 °C and freeze as soon as possible after usage.
Transformation efficiency depends on the quality of the competent cells. Make sure that cells were immediately frozen after preparation and stored at ≤ 80 °C. Please also note that for some cells, transformation efficiency drops drastically over time. Additionally, we advise to use E. coli strain KL740 for amplification of any plasmids containing σ70-specific promoter like P70a.
No. All our Toolbox 2.0 plasmids (except the positive control plasmid P70a-deGFP that comes with the myTXTL kit are meant for plasmid amplification in E. coli only. The degree of purity is NOT sufficient for efficient in vitro production. Please refer to the current myTXTL handbook for recommendations on preparation of plasmid templates for myTXTL reactions.
We share plasmid and linear DNA sequences that have been tested to work well in myTXTL, including kit plasmid controls, to allow users to optimize their designs with respect to 5′ and 3′ sequences that enable optimal expression for their application. Please contact techsupport@arbor.daicel.com with any questions.
Yes. The myTXTL master mix contains tRNAs for seven codons rarely used in E. coli to enable expression of eukaryotic proteins.
Yes! That only requires the addition of the plasmid coding for T7 RNA polymerase under transcriptional control of a σ70-specific promoter, e.g. P70a-T7rnap and possibly your inducer like IPTG if it is an inducible promoter. The optimum concentration of P70a-T7rnap is usually between 0.1 nM and 1 nM. Higher concentration normally does not increase protein yield. The more important parameter for efficient protein expression is the concentration of the plasmid that encodes for your protein of interest downstream of the T7 promoter, which will be most likely in the range of 5-20 nM.
10 mM Tris/HCl pH 7.5.
Using linear DNA templates greatly increases the speed of the design-build-test-learn cycle as laborious steps like cloning, transformation and purification are no longer necessary. This is particularly useful when working with a high number of variants of a single protein that need to be studied and validated. The reduced costs of linear DNA can also expand the sampled sequence space for protein designs compared to the plasmid format.
deGFP is a N- and C-terminally truncated version of the reporter eGFP that is more translatable in cell-free systems. The excitation and emission spectra as well as fluorescence properties of deGFP and eGFP are identical which enables the use of commercial eGFP protein to be used in a standard curve to quantify the deGFP in the reaction.
The myTXTL Linear DNA Expression Kit is based off our myTXTL Sigma 70 Master Mix Kit, but has been further engineered to efficiently produce soluble and membrane proteins using linear DNA templates without the need for nuclease inhibitors like GamS. Simply add linear DNA template to the optimized master mix to begin protein synthesis.
All P70 promoters originate from the lambda phage promoter for the repressor Cro with its two operator sites and are specific to the E. coli sigma factor 70. They differ in strength (P70a > P70d > P70b > P70c) due to mutations that were introduced at -35 and/or -10 regions.
We recommend setting the myTXTL GamS Protein concentration in a myTXTL reaction at 10 uM (myTXTL GamS stock solution is provided at 150 uM).
We offer a range of fluorescent and non-fluorescent label options for myTags Custom labeled in situ hybridization probes. Please contact us for current available label options.
The available label options enable compatibility with most microscopes or other visualization instruments, as well as enabling detecting multiple targets within the same sample by using spectrally distinct fluorophores for individual probesets.
We may be able to accommodate other labeling options, please contact us for availability.
The number of assays per library depends on a number of factors including the probe density of your library, the size of your target region, the number of probes in the library, and the FISH protocol. Generally we recommend starting with 10pmol of labeled probes per standard FISH slide and then modifying the input amount based on the initial results.
The latest recommended protocols for both labeled and immortal probe libraries can be found in the Resources tab, but in general, myTags in situ hybridization libraries are compatible with most FISH protocols. Please contact us for specific recommendations.
We can often accommodate customer-designed probes into the myTags labeling framework. Please contact us for recommendations on the design parameters and other information before designing your probe sequences.
Yes, we can synthesize immortal probe libraries that can be labeled using the Oligopaints labeling method. Please note these probe libraries are not compatible with the standard myTags labeling protocol due to sequence requirements of the Oligopaints method.
We generally ask for up to 3-4 weeks after an order is placed to ship myTags libraries.
We recommend using the myTags labeling protocol with myTags immortal libraries for perfroming the labeling process in your own lab. If you would like to use a different protocol, one of our scientists would be happy to provide assistance to ensure success.
Probes are available in 2 configurations to detect both the positive (+) strand and negative (-) strand sequences:
Positive (+) strand probes– SARS-CoV-2 is a class IV RNA virus with an ssRNA genome (positive strand). The probes to detect the (+) strand will hybridize to full-length genomic (+) strand RNA as well as subgenomic (+) strand RNAs made during replication.
Negative (-) strand probes– Detection of the (-) strand is a hallmark of active viral replication. The probes to detect the (-) strand will hybridize to the full-length (-) strand as well as subgenomic (-) strand RNAs. In experimental applications where viral infection is not controlled, additional confirmation of SARS-CoV-2 presence via PCR is recommended.
NOTE: The positive (+) and negative (-) strand probes are not designed to be used in the same hybridization experiment. If co-hybridization is required for your experimental design, please contact us for a customized probe solution.
myTags Expert SARS-CoV-2 probes are available in ready-to-use labeled formats, labeled with Alexa-488, ATTO-550, or ATTO-647N fluorescent tags. For experiments that need a brighter signal, the 3X fluorescent tag upgrade is recommended, which can aid detection of lower cellular viral RNA concentrations at earlier experimental time points.
Yes. Due to the manufacturing process, there might be a small pellet visible. It is critical that you resuspend this pellet back into the myTXTL Master Mix completely before aliquoting it to set up your myTXTL reaction(s).


Bluesky