Our Library Prep Kit for myBaits provides a robust solution for pairing with almost any myBaits Custom DNA-Seq kit project, as it can tolerate a wide range of input quantities and qualities of dsDNA samples.

If you prefer to use a different library prep system, then myBaits is compatible with a wide range of PCR-amplified and amplifiable NGS libraries, including Illumina TruSeq® -style, Illumina Nextera® Flex-style, Ion Torrent, or other libraries with universal adapter priming sites. It is NOT recommended to use myBaits with PCR-free libraries. Additionally, myBaits are incompatible with libraries made using original Nextera or Nextera XT library preparation kits, or any library type containing biotin. Dual-indexed libraries are strongly recommended to reduce the hazard of mis-indexing induced by PCR jumping events. The applicable myBaits manual provides detailed protocol instructions for enriching libraries for sequencing on short- and/or long-read platforms (e.g. PacBio® or Oxford Nanopore Technologies®).

If you are using a never-before-tried library prep protocol to pair with your myBaits kit, we recommend that you first perform some total library (shotgun) sequencing before doing myBaits enrichment. This is important in order to verify that your chosen library prep protocol/kit generates libraries of sufficient complexity and minimal bias in your hands, otherwise you may experience poor target capture results. High quality libraries are absolutely essential for achieving a successful target capture project.

Provided below are a list of companies that sell NGS library prep kits that are known to be compatible with myBaits. This is NOT an exhaustive list; there are many other unlisted options that are also compatible with myBaits. Also, kits on this list may not necessarily be appropriate for your samples. NGS library prep is not “one size fits all”; different factors such as sample type, DNA input amount, genome complexity, and sequence composition may influence the type of library prep kit that would be best for your application. For example, low input, degraded, and/or damaged DNA templates may require special handling (see below) and/or modifications to commercial kits.

Contact these and other manufacturers to learn about your options and find what works best for your samples and project needs:

  • Daicel Arbor Biosciences “Library Prep Kit for myBaits
  • Biosearch / Lucigen
  • Claret Bioscience
  • Illumina
  • New England Biolabs
  • Kapa Biosystems / Roche
  • PerkinElmer / Revvity
  • Rubicon Genomics / Takara
  • Swift Biosciences / IDT

Modified protocols for lower-cost library preps:

  • TC Glenn et al. 2016. “Adapterama I: universal stubs and primers for 384 unique dual-indexed or 147,456 combinatorially-indexed Illumina libraries (iTru & iNext)”. PeerJ, https://peerj.com/articles/7755/
  • N Rohland, D Reich. 2012. “Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture”. Genome Research, doi: 10.1101/gr.128124.111
  • Recommended especially for degraded/ancient DNA (blunt-ended library prep):
    • M Meyer, M Kircher. 2010. “Illumina Sequencing Library Preparation for Highly Multiplexed Target Capture and Sequencing”. Cold Spring Harbor Protocols, doi:10.1101/pdb.prot5448
    • M Kircher, S Sawyer, M Meyer. 2012. “Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform.” Nucleic Acids Research 40(1): e3, doi: 10.1093/nar/gkr771

The applicable myBaits manual provides detailed protocol support for “High Sensitivity” type samples, including ancient DNA and other samples that are expected to have degraded/damaged target molecules. Please review this recommended protocol carefully to ensure that you purchase the correct amount of reagents required to perform your chosen protocol. For example, if you wish to do two rounds of enrichment, you may need to purchase additional sets of myBaits hybridization/capture reagents, which are available for purchase in 16, 48, or 96 Reaction sizes.

The decision whether to include >1 bait variant to represent additional diversity for a given region should depend on (1) the amount of diversity you want to have the ability to capture and (2) the maximum number of unique probe sequences that you want to purchase.

The ability of a given bait to hybridize to a target sequence will necessarily be dependent on the hybridization & washing conditions that you choose. Under the standard capture conditions, it is generally expected that a bait should be able to capture sequences of at least 5-10% local nucleotide divergence. Therefore, for example, it is normally not considered necessary to include probes for both allelic variants of a singleton SNP in a bait design, since a single bait should be able to capture both. However if you have many SNPs within a small window, you may wish to include >1 representative haplotype within your baitset. Please note that we cannot synthesize ambiguities or mixed bases; all non-A/T/C/G bases will be replaced by a random candidate base during manufacturing.

Capturing individual libraries typically produces the best per-sample results. However, multiple dual-indexed libraries can be pooled into single capture reactions (e.g. “multiplexing”) in order to assay more samples per kit. For new baitsets, we strongly recommend first performing trial captures with different pooling schemes to determine what works best for your particular samples and bait set. Optimal pooling parameters (both in terms of number of libraries and total mass per library) will vary between library types and bait sets, and will require trials to identify. However, many configurations should work well.

Specific recommendations for library co-enrichment pooling for different project types can be found in the applicable myBaits manual.

If you are using transcriptome sequences for your bait design, you may or may not know the location of the exon boundaries. However, this is not necessarily a problem for bait design, since we will typically design overlapping baits tiled across the full sequence. Any baits spanning across exon boundaries may not work well, but they will have neighboring baits which will still function. However any short exons (below the bait length) may not be recoverable unless they can be “padded” with true genomic (intronic) sequence.