Museum genomics provide an opportunity to investigate population demographics of extinct species, especially valuable when research prior to extinction was minimal. The Bachman’s warbler (Vermivora bachmanii) is hypothesized to have gone extinct due to loss of its specialized habitat. However, little is known about other potential contributing factors such as natural rarity or changes to connectivity following habitat fragmentation. We examined mitochondrial DNA (mtDNA) and genome-wide SNPs using specimens collected from breeding and migration sites across the range of the Bachman’s warbler. We found no signals of strong population structuring across the breeding range of Bachman’s warblers in both mtDNA and genome-wide SNPs. Thus, long-term population isolation did not appear to be a significant contributor to the extinction of the Bachman’s warbler. Instead, our findings support the theory that Bachman’s warblers underwent a rapid decline likely driven by habitat destruction, which may have been exacerbated by the natural rarity, habitat specificity and low genetic diversity of the species.

AngiospeIn the period between 5,300 and 4,900 calibrated years before present (cal. bp), populations across large parts of Europe underwent a period of demographic decline1,2. However, the cause of this so-called Neolithic decline is still debated. Some argue for an agricultural crisis resulting in the decline3, others for the spread of an early form of plague4. Here we use population-scale ancient genomics to infer ancestry, social structure and pathogen infection in 108 Scandinavian Neolithic individuals from eight megalithic graves and a stone cist. We find that the Neolithic plague was widespread, detected in at least 17% of the sampled population and across large geographical distances. We demonstrate that the disease spread within the Neolithic community in three distinct infection events within a period of around 120 years. Variant graph-based pan-genomics shows that the Neolithic plague genomes retained ancestral genomic variation present in Yersinia pseudotuberculosis, including virulence factors associated with disease outcomes. In addition, we reconstruct four multigeneration pedigrees, the largest of which consists of 38 individuals spanning six generations, showing a patrilineal social organization. Lastly, we document direct genomic evidence for Neolithic female exogamy in a woman buried in a different megalithic tomb than her brothers. Taken together, our findings provide a detailed reconstruction of plague spread within a large patrilineal kinship group and identify multiple plague infections in a population dated to the beginning of the Neolithic decline.

Submission form to select panels for customizing myBaits Expert Respiratory Virus Kit order with individual bait modules.

Detailed information about target sequences used for probe design of all modules for the myBaits Expert Respiratory Virus Kit

Kit for efficient, effective genome sequencing of respiratory viral pathogens. Choose individual or precombined panel options.

Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5,6,7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.

Safety Data Sheet (SDS) for myBaits kits with V5 chemistry. US version.

Safety Data Sheet (SDS) for myBaits kits with V5 chemistry. EU version.

Robust library prep for targeted sequencing.

Safety Data Sheet (SDS) for Library Preparation Kits for myBaits. EU version.