Abstract— Oenothera sect. Pachylophus has proven to be a valuable system in which to study plant-insect coevolution and the drivers of variation in floral morphology and scent. Current species circumscriptions based on morphological characteristics suggest that the section consists of five species, one of which is subdivided into five subspecies. Previous attempts to understand species (and subspecies) relationships at a molecular level have been largely unsuccessful due to high levels of incomplete lineage sorting and limited phylogenetic signal from slowly evolving gene regions. In the present study, target enrichment was used to sequence 322 conserved protein-coding nuclear genes from 50 individuals spanning the geographic range of Oenothera sect. Pachylophus , with species trees inferred using concatenation and coalescent-based methods. Our findings concur with previous research in suggesting that O. psammophila and O. harringtonii are nested within a paraphyletic Oenothera cespitosa . By contrast, our results show clearly that the two annual species ( O. cavernae and O. brandegeei ) did not arise from the O. cespitosa lineage, but rather from a common ancestor of Oenothera sect. Pachylophus . Budding speciation as a result of edaphic specialization appears to best explain the evolution of the narrow endemic species O. harringtonii and O. psammophila . Complete understanding of possible introgression among subspecies of O. cespitosa will require broader sampling across the full geographical and ecological ranges of these taxa.

The recovery and analysis of genetic material obtained from thermally altered human bones and teeth are increasingly important to forensic investigations, especially in cases where soft-tissue identification is no longer possible. Although little is known about how these fire-related processes affect DNA degradation over time, next-generation sequencing technology in combination with traditional osteobiographical applications may provide us clues to these questions. In this study, we compare whole-mitochondrial genome data generated using two different DNA extraction methods from 27 thermally altered samples from fire victims from Maricopa County, Arizona. DNA extracts were converted to double-stranded DNA libraries and enriched for whole-mitochondrial DNA using synthetic biotinylated RNA baits, then sequenced on an Illumina MiSeq. We processed the mitochondrial data using an in-house computational pipeline (MitoPipe1.0) composed of ancient DNA and modern genomics applications, then compared the resulting information across the two extraction types and five burn categories. Our analysis shows that DNA fragmentation increases with temperature, but that the acute insult from fire combined with the lack of water is insufficient to produce 5’ and 3’ terminal deamination characteristic of ancient DNA. Our data also suggest an acute and significant point of DNA degradation between 350˚C and 550˚C, and that the likelihood of generating high quality mtDNA haplogroup calls decreases significantly at temperatures >550˚C. This research is part of a concerted effort to understand how fire affects our ability to generate genetic profiles suitable for forensic identification purposes.

SARS-CoV-2 variants of concern B.1.1.7 and B.1.351 do not cause more severe disease in rhesus macaques. , The emergence of several SARS-CoV-2 variants has caused global concerns about increased transmissibility, increased pathogenicity, and decreased efficacy of medical countermeasures. Animal models can be used to assess phenotypical changes in the absence of confounding factors. Here, we compared variants of concern (VOC) B.1.1.7 and B.1.351 to a recent B.1 SARS-CoV-2 isolate containing the D614G spike substitution in the rhesus macaque model. B.1.1.7 behaved similarly to D614G with respect to clinical disease and replication in the respiratory tract. Inoculation with B.1.351 resulted in lower clinical scores, lower lung virus titers, and less severe lung lesions. In bronchoalveolar lavages, cytokines and chemokines were up-regulated on day 4 in animals inoculated with D614G and B.1.1.7 but not with B.1.351. In nasal samples, cytokines and chemokines were up-regulated only in the B.1.1.7-inoculated animals. Together, our study suggests that circulation under diverse evolutionary pressures favors transmissibility and immune evasion rather than increased pathogenicity.

QTL controlling vigour and related traits were identified in a chickpea RIL population and validated in diverse sets of germplasm. Robust KASP markers were developed for marker-assisted selection.

Abstract The family Pteropodidae (Old World fruit bats) comprises $>$200 species distributed across the Old World tropics and subtropics. Most pteropodids feed on fruit, suggesting an early origin of frugivory, although several lineages have shifted to nectar-based diets. Pteropodids are of exceptional conservation concern with $>$50% of species considered threatened, yet the systematics of this group has long been debated, with uncertainty surrounding early splits attributed to an ancient rapid diversification. Resolving the relationships among the main pteropodid lineages is essential if we are to fully understand their evolutionary distinctiveness, and the extent to which these bats have transitioned to nectar-feeding. Here we generated orthologous sequences for $>$1400 nuclear protein-coding genes (2.8 million base pairs) across 114 species from 43 genera of Old World fruit bats (57% and 96% of extant species- and genus-level diversity, respectively), and combined phylogenomic inference with filtering by information content to resolve systematic relationships among the major lineages. Concatenation and coalescent-based methods recovered three distinct backbone topologies that were not able to be reconciled by filtering via phylogenetic information content. Concordance analysis and gene genealogy interrogation show that one topology is consistently the best supported, and that observed phylogenetic conflicts arise from both gene tree error and deep incomplete lineage sorting. In addition to resolving long-standing inconsistencies in the reported relationships among major lineages, we show that Old World fruit bats have likely undergone at least seven independent dietary transitions from frugivory to nectarivory. Finally, we use this phylogeny to identify and describe one new genus. [Chiroptera; coalescence; concordance; incomplete lineage sorting; nectar feeder; species tree; target enrichment.]

Abstract The charismatic trumpetfishes, goatfishes, dragonets, flying gurnards, seahorses, and pipefishes encompass a recently defined yet extraordinarily diverse clade of percomorph fishes—the series Syngnatharia. This group is widely distributed in tropical and warm-temperate regions, with a great proportion of its extant diversity occurring in the Indo-Pacific. Because most syngnatharians feature long-range dispersal capabilities, tracing their biogeographic origins is challenging. Here, we applied an integrative phylogenomic approach to elucidate the evolutionary biogeography of syngnatharians. We built upon a recently published phylogenomic study that examined ultraconserved elements by adding 62 species (total 169 species) and one family (Draconettidae), to cover ca. 25% of the species diversity and all 10 families in the group. We inferred a set of time-calibrated trees and conducted ancestral range estimations. We also examined the sensitivity of these analyses to phylogenetic uncertainty (estimated from multiple genomic subsets), area delimitation, and biogeographic models that include or exclude the jump-dispersal parameter ($j)$. Of the three factors examined, we found that the $j$ parameter has the strongest effect in ancestral range estimates, followed by number of areas defined, and tree topology and divergence times. After accounting for these uncertainties, our results reveal that syngnatharians originated in the ancient Tethys Sea ca. 87 Ma (84–94 Ma; Late Cretaceous) and subsequently occupied the Indo-Pacific. Throughout syngnatharian history, multiple independent lineages colonized the eastern Pacific (6–8 times) and the Atlantic (6–14 times) from their center of origin, with most events taking place following an east-to-west route prior to the closure of the Tethys Seaway ca. 12–18 Ma. Ultimately, our study highlights the importance of accounting for different factors generating uncertainty in macroevolutionary and biogeographic inferences.[Historical biogeography; jump-dispersal parameter; macroevolutionary uncertainty; marine fishes; syngnathiformes; ultraconserved elements].

We investigated ChAdOx1 nCoV-19 (AZD1222) vaccine efficacy against SARS-CoV-2 variants of concern (VOCs) B.1.1.7 and B.1.351 in Syrian hamsters. We previously showed protection against SARS-CoV-2 disease and pneumonia in hamsters vaccinated with a single dose of ChAdOx1 nCoV-19. Here, we observe a 9.5-fold reduction of virus neutralizing antibody titer in vaccinated hamster sera against B.1.351 compared to B.1.1.7. Vaccinated hamsters challenged with B.1.1.7 or B.1.351 do not lose weight compared to control animals. In contrast to control animals, the lungs of vaccinated animals do not show any gross lesions. Minimal to no viral subgenomic RNA (sgRNA) and no infectious virus can be detected in lungs of vaccinated animals. Histopathological evaluation shows extensive pulmonary pathology caused by B.1.1.7 or B.1.351 replication in the control animals, but none in the vaccinated animals. These data demonstrate the effectiveness of the ChAdOx1 nCoV-19 vaccine against clinical disease caused by B.1.1.7 or B.1.351 VOCs.