Premise Cornales is an order of flowering plants containing ecologically and horticulturally important families, including Cornaceae (dogwoods) and Hydrangeaceae (hydrangeas), among others. While many relationships in Cornales are strongly supported by previous studies, some uncertainty remains with regards to the placement of Hydrostachyaceae and to relationships among families in Cornales and within Cornaceae. Here we analyzed hundreds of nuclear loci to test published phylogenetic hypotheses and estimated a robust species tree for Cornales. Methods Using the Angiosperms353 probe set and existing data sets, we generated phylogenomic data for 158 samples, representing all families in the Cornales, with intensive sampling in the Cornaceae. Results We curated an average of 312 genes per sample, constructed maximum likelihood gene trees, and inferred a species tree using the summary approach implemented in ASTRAL-III, a method statistically consistent with the multispecies coalescent model. Conclusions The species tree we constructed generally shows high support values and a high degree of concordance among individual nuclear gene trees. Relationships among families are largely congruent with previous molecular studies, except for the placement of the nyssoids and the Grubbiaceae-Curtisiaceae clades. Furthermore, we were able to place Hydrostachyaceae within Cornales, and within Cornaceae, the monophyly of known morphogroups was well supported. However, patterns of gene tree discordance suggest potential ancient reticulation, gene flow, and/or ILS in the Hydrostachyaceae lineage and the early diversification of Cornus. Our findings reveal new insights into the diversification process across Cornales and demonstrate the utility of the Angiosperms353 probe set.

Most subterranean animals are assumed to have evolved from surface ancestors following colonization of a cave system; however, very few studies have raised the possibility of “subterranean speciation” in underground habitats (i.e., obligate cave-dwelling organisms [troglobionts] descended from troglobiotic ancestors). Numerous endemic subterranean diving beetle species from spatially discrete calcrete aquifers in Western Australia (stygobionts) have evolved independently from surface ancestors; however, several cases of sympatric sister species raise the possibility of subterranean speciation. We tested this hypothesis using vision (phototransduction) genes that are evolving under neutral processes in subterranean species and purifying selection in surface species. Using sequence data from 32 subterranean and five surface species in the genus Paroster (Dytiscidae), we identified deleterious mutations in long wavelength opsin (lwop), arrestin 1 (arr1), and arrestin 2 (arr2) shared by a sympatric sister-species triplet, arr1 shared by a sympatric sister-species pair, and lwop and arr2 shared among closely related species in adjacent calcrete aquifers. In all cases, a common ancestor possessed the function-altering mutations, implying they were already adapted to aphotic environments. Our study represents one of the first confirmed cases of subterranean speciation in cave insects. The assessment of genes undergoing pseudogenization provides a novel way of testing modes of speciation and the history of diversification in blind cave animals.

Heptapteridae is composed of 228 valid species allocated in 24 genera, making it the most diverse family within superfamily Pimelodoidea, a clade endemic to the Neotropical freshwaters. Heptapterids are widely distributed from southern Mexico to the Pampas of Argentina and occupy a variety of habitats generally in small- to medium-sized rivers. To evaluate the phylogenetic relationships of Heptapteridae, we used a matrix with 1,319 ultraconserved elements (UCEs) from the genome from 56 specimens spanning 42 species and 24 genera of Heptapteridae and 19 related siluriform taxa. Maximum likelihood, Bayesian and coalescent-based analyses strongly supported the monophyly of Heptapteridae and confirmed previous hypotheses of a sister relationship between Heptapteridae and Conorhynchos conirostris. We provide the evidence to recognize two subfamilies: (1) Rhamdiinae (Goeldiella, Rhamdella, Rhamdia, Brachyrhamdia, Pimelodella) and (2) Heptapterinae; with two tribes: Brachyglaniini new tribe (Gladioglanis, Myoglanis, Brachyglanis and Leptorhamdia) and Heptapterini (Mastiglanis, Chasmocranus, Cetopsorhamdia, Pariolius, Phenacorhamdia, Nemuroglanis, Imparfinis, Taunayia, Rhamdioglanis, Acentronichthys, Rhamdiopsis and Heptapterus). Inside Heptapterini, we recognize five subclades and provide putative morphological synapomorphies. This paper represents the first molecular hypothesis of intergeneric and interspecific relationships helping to better delineate heptapterid taxa.

A dataset of promoter and 5’UTR sequences of homoeo-alleles of 495 wheat genes that contribute to agriculturally important traits in 95 ancestral and commercial wheat cultivars is presented here. The high stringency myBaits technology used made individual capture of homoeo-allele promoters possible, which is reported here for the first time. Promoters of most genes are remarkably conserved across the 82 hexaploid cultivars used with <7 haplotypes per promoter and 21% being identical to the reference Chinese Spring. InDels and many high-confidence SNPs are located within predicted plant transcription factor binding sites, potentially changing gene expression. Most haplotypes found in the Watkins landraces and a few haplotypes found in T. monococcum, germplasms hitherto not thought to have been used in modern wheat breeding, are already found in many commercial hexaploid wheats. The full dataset which is useful for genomic and gene function studies and wheat breeding is available at https://rrescloud.rothamsted.ac.uk/index.php/s/3vc9QopcqYEbIUs/authenticate.

Remaining a major healthcare concern with nearly 29 million confirmed cases worldwide at the time of writing, novel severe acute respiratory syndrome coronavirus – 2 (SARS-CoV-2) has caused more than 920 thousand deaths since its outbreak in China, December 2019. First case of a person testing positive for SARS-CoV-2 infection within the territory of the Republic of Latvia was registered on 2nd of March 2020, nine days prior to the pandemic declaration by WHO. Since then, more than 277 000 tests were carried out confirming a total of 1464 cases of COVID-19 in the country as of 12th of September 2020. Rapidly reacting to the spread of the infection, an ongoing sequencing campaign was started mid-March in collaboration with the local testing laboratories, with an ultimate goal in sequencing as much local viral isolates as possible, resulting in first full-length SARS-CoV-2 isolate genome sequences from the Baltics region being made publicly available in early April. With 133 viral isolates representing ~9.1% of the total COVID-19 cases during the “first coronavirus wave” in the country (early March, 2020 – mid September, 2020) being completely sequenced as of today, here we provide a first report on the genetic diversity of Latvian SARS-CoV-2 isolates.

There is a growing diversity of bat-associated lyssaviruses in the Old World. In August 2017, a dead Brandt’s bat (Myotis brandtii) tested positive for rabies and based on partial sequence analysis, the novel Kotalahti bat lyssavirus (KBLV) was identified. Because the bat was in an autolyzed state, isolation of KBLV was neither successful after three consecutive cell passages on cells nor in mice. Next generation sequencing (NGS) was applied using Ion Torrent ™ S5 technology coupled with target enrichment via hybridization-based capture (myBaits®) was used to sequence 99% of the genome, comprising of 11,878 nucleotides (nt). KBLV is most closely related to EBLV-2 (78.7% identity), followed by KHUV (79.0%) and BBLV (77.6%), supporting the assignment as phylogroup I lyssavirus. Interestingly, all of these lyssaviruses were also isolated from bat species of the genus Myotis, thus supporting that M. brandtii is likely the reservoir host. All information on antigenic and genetic divergence fulfil the species demarcation criteria by ICTV, so that we recommend KBLV as a novel species within the Lyssavirus genus. Next to sequence analyses, assignment to phylogroup I was functionally corroborated by cross-neutralization of G-deleted RABV, pseudotyped with KBLV-G by sera from RABV vaccinated humans. This suggests that conventional RABV vaccines also confer protection against the novel KBLV.

Evolution of vertebrate endemics in oceanic islands follows a predictable pattern, known as the island rule, according to which gigantism arises in originally small-sized species and dwarfism in large ones. Species of extinct insular giant rodents are known from all over the world. In the Canary Islands, two examples of giant rats, †Canariomys bravoi and †Canariomys tamarani, endemic to Tenerife and Gran Canaria, respectively, disappeared soon after human settlement. The highly derived morphological features of these insular endemic rodents hamper the reconstruction of their evolutionary histories. We have retrieved partial nuclear and mitochondrial data from †C. bravoi and used this information to explore its evolutionary affinities. The resulting dated phylogeny confidently places †C. bravoi within the African grass rat clade (Arvicanthis niloticus). The estimated divergence time, 650 000 years ago (95% higher posterior densities: 373 000–944 000), points toward an island colonization during the Günz–Mindel interglacial stage. †Canariomys bravoi ancestors would have reached the island via passive rafting and then underwent a yearly increase of mean body mass calculated between 0.0015 g and 0.0023 g; this corresponds to fast evolutionary rates (in darwins (d), ranging from 7.09 d to 2.78 d) that are well above those observed for non-insular mammals.

Abstract. Rhinonycteridae (trident bats) are a small Palaeotropical family of insectivorous bats allied to Hipposideridae. Their taxonomy has been in a state o