PREMISE Universal target enrichment kits maximize utility across wide evolutionary breadth while minimizing the number of baits required to create a cost-efficient kit. The Angiosperms353 kit has been successfully used to capture loci throughout the angiosperms, but the default target reference file includes sequence information from only 6–18 taxa per locus. Consequently, reads sequenced from on-target DNA molecules may fail to map to references, resulting in fewer on-target reads for assembly, and reducing locus recovery. METHODS We expanded the Angiosperms353 target file, incorporating sequences from 566 transcriptomes to produce a ‘mega353’ target file, with each locus represented by 17–373 taxa. This mega353 file is a drop-in replacement for the original Angiosperms353 file in HybPiper analyses. We provide tools to subsample the file based on user-selected taxon groups, and to incorporate other transcriptome or protein-coding gene data sets. RESULTS Compared to the default Angiosperms353 file, the mega353 file increased the percentage of on-target reads by an average of 32%, increased locus recovery at 75% length by 49%, and increased the total length of the concatenated loci by 29%. DISCUSSION Increasing the phylogenetic density of the target reference file results in improved recovery of target capture loci. The mega353 file and associated scripts are available at: https://github.com/chrisjackson-pellicle/NewTargets.

PREMISE The successful application of universal targeted sequencing markers, such as those developed for the Angiosperms353 probe set, within populations could reduce or eliminate the need for specific marker development, while retaining the benefits of full-gene sequences in population-level analyses. However, whether the Angiosperms353 markers provide sufficient variation within species to calculate demographic parameters is untested. METHODS Using herbarium specimens from a 50-year-old floristic survey in Texas, we sequenced 95 samples from 24 species using the Angiosperms353 probe set. Our data workflow calls variants within species and prepares data for population genetic analysis using standard metrics. In our case study, gene recovery was affected by genomic library concentration only at low concentrations and displayed limited phylogenetic bias. RESULTS We identified over 1000 segregating variants with zero missing data for 92% of species and demonstrate that Angiosperms353 markers contain sufficient variation to estimate pairwise nucleotide diversity (π)—typically between 0.002 and 0.010, with most variation found in flanking non-coding regions. In a subset of variants that were filtered to reduce linkage, we uncovered high heterozygosity in many species, suggesting that denser sampling within species should permit estimation of gene flow and population dynamics. DISCUSSION Angiosperms353 should benefit conservation genetic studies by providing universal repeatable markers, low missing data, and haplotype information, while permitting inclusion of decades-old herbarium specimens.

Abstract Sedimentary ancient DNA (sedaDNA) has been established as a viable biomolecular proxy for tracking taxon presence through time in a local environment, even in the total absence of surviving tissues. SedaDNA is thought to survive through mineral binding, facilitating long-term biomolecular preservation, but also challenging DNA isolation. Two common limitations in sedaDNA extraction are the carryover of other substances that inhibit enzymatic reactions, and the loss of authentic sedaDNA when attempting to reduce inhibitor co-elution. Here, we present a sedaDNA extraction procedure paired with targeted enrichment intended to maximize DNA recovery. Our procedure exhibits a 7.7–19.3x increase in on-target plant and animal sedaDNA compared to a commercial soil extraction kit, and a 1.2–59.9x increase compared to a metabarcoding approach. To illustrate the effectiveness of our cold spin extraction and PalaeoChip capture enrichment approach, we present results for the diachronic presence of plants and animals from Yukon permafrost samples dating to the Pleistocene-Holocene transition, and discuss new potential evidence for the late survival (~9700 years ago) of mammoth ( Mammuthus sp. ) and horse ( Equus sp. ) in the Klondike region of Yukon, Canada. This enrichment approach translates to a more taxonomically diverse dataset and improved on-target sequencing.

Within tribe Gnaphalieae (Asteraceae), the Australasian clade is one of the four major clades. In Australia, the Gnaphalieae account for 488 species or approximately half of the native Asteraceae, encompassing wide ecological and morphological diversity including shrubs, everlasting paper daisies, cudweeds, alpine cushion plants, and ephemeral herbs in the arid zone. The evolution of the Australasian clade is still poorly understood. The most detailed previous infratribal classification of Gnaphalieae has recently been revised, resulting in the recognition of two subtribes, with all Australian species placed in subtribe Gnaphaliinae. The most comprehensive previous phylogeny of Australian Gnaphalieae used high-copy ribosomal and chloroplast markers but showed limited resolution and branch support. We used conserved ortholog set data produced with sequence capture and 53 chloroplast genes to infer nuclear and chloroplast likelihood phylogenies for Australian Gnaphalieae, generating data for at least one species each from 80 of the 86 native genera. Four major clades were resolved: the Euchiton clade of cudweed-like and alpine perennial species; the shrubby Cassinia clade; the predominantly perennial and eastern Australian Waitzia clade; and the predominantly ephemeral and western Australian to Eremaean Angianthus clade. The Cassinia, Waitzia, and Angianthus clades are largely congruent with “groups” in a previous morphological analysis and classification of Gnaphalieae. Analysis of ancestral ranges implied the temperate Southeast of Australia as the most likely area of origin for the Australian Gnaphalieae as a whole and for three of the four major clades. The Angianthus clade was implied to be ancestrally Eremaean, with a major secondary radiation originating in southwestern Australia. Our broadly sampled phylogeny provides a framework to inform sampling and design of future studies to test the circumscription of genera.

Atta Fabricius is an ecologically dominant leaf-cutting ant genus, the major herbivore of the Neotropics, and an agricultural pest of great economic importance. Phylogenetic relationships within Atta have until now remained uncertain, and the delimitation and identification of a subset of Atta species are problematic. To address these phylogenetic uncertainties, we reconstruct the most comprehensive phylogenetic estimate to date of Atta by employing ultraconserved elements (UCEs). We recovered 2340 UCE loci from 224 Atta specimens, which include 14 out of the 15 identifiable species from across their geographic distributions, and 49 outgroup specimens. Our results strongly support the monophyly of Atta and of the four clades that coincide with the previously recognized subgenera Archeatta Gonçalves, Atta s.s. Emery, Epiatta Borgmeier, and Neoatta Gonçalves. The Archeatta clade contains three species occurring in North and Central America and the Caribbean and is the sister group of the remainder of all other Atta species. The Atta s.s. clade is composed of two species occupying North, Central, and South America. The Epiatta clade contains seven entirely South American species and the two species of the Neoatta clade occur in Central and South America. Divergence-dating analyses identify a series of major events in the Miocene, such as the divergence of Acromyrmex Mayr and Atta 16.7 million years ago (Ma) and the crown-group origin of Atta around 8.5 Ma. Extant Atta species evolved very recently, originating in the early Pleistocene, approximately 1.8–0.3 Ma (crown-group ages). We provide the first evidence that Atta goiana Gonçalves belongs to the Epiatta clade and that Atta robusta Borgmeier is the species with the youngest crown-group age of 0.3 Ma. The very young ages of Atta and its component species indicate a recent, rapid radiation. Biogeographic analyses suggest that the range of the most recent common ancestor of Atta consisted of the combined North/Central America and NW South America bioregions and that one daughter lineage subsequently dispersed into South America, rapidly diversifying in the newly formed Cerrado biome and Chaco, and further dispersing into the Atlantic Forest, Caatinga, and Pampas bioregions.

Premise Cunoniaceae are a family of shrubs and trees with 27 genera and ca. 335 species, mostly confined to tropical and wet temperate zones of the southern hemisphere. There are several known issues regarding generic limits, and the family also displays a number of intriguing long-range disjunctions. Methods We performed a phylogenomic study using the universal Angiosperms353 probe set for targeted sequence capture. We sampled 37 species covering all genera in the Cunoniaceae, and those in the three closely related families of the crown Oxalidales (Brunelliaceae, Cephalotaceae, and Elaeocarpaceae). We also performed analyses for molecular dating and ancestral area reconstruction. Results We recovered the topology (Cunoniaceae, (Cephalotaceae, (Brunelliaceae, Elaeocarpaceae))) and a well-resolved genus-level phylogeny of Cunoniaceae with strongly supported clades corresponding to all previously recognized tribes. As previously suspected, the genera Ackama and Weinmannia were recovered as paraphyletic. Australasia was inferred as the likely ancestral area for the family. Conclusions The current distribution of Cunoniaceae is best explained by long-distance dispersal with a few possible cases of Australasian–American vicariance events. Extinctions may have been important in determining the mostly Oceanian distribution of this family while some genera in the tribe Cunonieae and in New Caledonia have undergone recent bursts of diversification. New generic diagnoses, 80 new combinations, and one new name are provided for a recircumscribed Ackama (including Spiraeopsis), a much smaller Weinmannia (mostly New World), and a resurrected Pterophylla to accommodate Old World taxa previously in Weinmannia.

The evolutionary history of Ichneumoninae, the largest subfamily of ichneumonid wasps, is investigated using genomic ultraconserved elements (UCEs). The dataset includes 147 species in 130 genera of Ichneumoninae and 155 outgroup taxa from 19 subfamilies. Matrices with varying degrees of completeness were analysed with different partition schemes and the resulting topologies were found to be mostly congruent. All analyses recovered Ichneumoninae as a monophyletic group, sister to all other Ichneumoniformes except Agriotypinae. Almost no support was found for previous tribal classification schemes, except that the tribes Phaeogenini and Platylabini are largely monophyletic. A new tribal classification is proposed based on the relationships recovered, consisting of seven tribes: Alomyini Förster, Phaeogenini Förster, Notosemini Townes, Eurylabini Heinrich, Platylabini Berthoumieu, Ichneumonini Latreille and a new monogeneric tribe, Abzariini Santos & Wahl. As documented in other lineages of Ichneumonidae, pervasive morphological convergence poses a challenge to the establishment of higher-level groups that are both monophyletic and diagnosable. Extremely short branches at the base of the Ichneumoninae clade suggest that the group may have undergone a rapid radiation when it first diverged, potentially associated with its specialization on lepidopteran hosts. Multiple changes in the morphology of the female abdomen suggest that morphological convergence is associated with multiple transitions in the use of pupal versus larval hosts across the subfamily. The results demonstrate the power of phylogenomic approaches to resolve evolutionary relationships in hyper-diverse and poorly studied insect groups and to provide a framework for testing evolutionary hypotheses.

Neotropical catfishes of the family Pseudopimelodidae comprise 53 species allocated to seven genera widely distributed in South America from northwestern Colombia and Venezuela to Argentina and Uruguay. Intergeneric relationships based on morphology-based phylogenies are conflicting, and the interspecific relationships remain incipient. We conducted the first molecular phylogeny of the family by analyzing sequence data from ultraconserved elements (UCEs) of the genome for 33 specimens of Pseudopimelodidae and 19 related taxa. Phylogenetic relationships were accessed by concatenated matrices using Bayesian inference and, maximum likelihood, and the coalescent approach by a species tree analysis. The phylogeny with 868 UCE loci and 906,689 bp strongly support the monophyly of Pseudopimelodidae, and the arrangement of two major subclades herein classified as subfamilies Pseudopimelodinae and the newly proposed Batrochoglaninae. Pseudopimelodinae is composed by Cruciglanis sister to Pseudopimelodus and Rhyacoglanis, whereas the new subfamily Batrochoglaninae is composed by Cephalosilurus and Lophiosilurus as sister to Batrochoglanis and Microglanis. Pseudopimelodinae is supported by five morphological synapomorphies and Batrochoglaninae supported by three such synapomorphies. The results of this study will surely guide future research aiming to delimit and describe species within the monophyletic groups.

Understanding patterns of gene flow and population structure is vital for managing threatened and endangered species. The reticulated flatwoods salamander (Ambystoma bishopi) is an endangered species with a fragmented range, therefore assessing connectivity and genetic population structure can inform future conservation. Samples collected from breeding sites (n = 5) were used to calculate structure and gene flow using three marker types: single nucleotide polymorphisms isolated from potential immune genes (SNPs), nuclear data from the major histocompatibility complex (MHC), and the mitochondrial control region. At a broad geographical scale, nuclear data (SNP and MHC) supported gene flow and little structure (FST = 0.00 – 0.09) while mitochondrial structure was high (ΦST = 0.15 – 0.36) and gene flow was low. Mitochondrial markers also exhibited isolation by distance (IBD) between sites (p = 0.01) and within one site (p = 0.04) while nuclear markers did not show IBD between or within sites (p = 0.17 and p = 0.66). Due to the discordant results between nuclear and mitochondrial markers, our results suggest male biased dispersal. Overall, salamander populations showed little genetic differentiation and structure with some gene flow, at least historically, among sampling sites. Given historic gene flow and a lack of population structure, carefully considered reintroductions could begin to expand the limited range of this salamander to ensure its long-term resilience.