Phylogenetic relationships in recent, rapid radiations can be difficult to resolve due to incomplete lineage sorting and reliance on genetic markers that evolve slowly relative to the rate of speciation. By incorporating hundreds to thousands of unlinked loci, phylogenomic analyses have the potential to mitigate these difficulties. Here, we attempt to resolve phylogenetic relationships among eight shrew species (genus Crocidura) from the Philippines, a phylogenetic problem that has proven intractable with small (< 10 loci) data sets. We sequenced hundreds of ultraconserved elements and whole mitochondrial genomes in these species and estimated phylogenies using concatenation, summary coalescent, and hierarchical coalescent methods. The concatenated approach recovered a maximally supported and fully resolved tree. In contrast, the coalescent-based approaches produced similar topologies, but each had several poorly supported nodes. Using simulations, we demonstrate that the concatenated tree could be positively misleading. Our simulations also show that the tree shape we tend to infer, which involves a series of short internal branches, is difficult to resolve, even if substitution models are known and multiple individuals per species are sampled. As such, the low support we obtained for backbone relationships in our coalescent-based inferences reflects a real and appropriate lack of certainty. Our results illuminate the challenges of estimating a bifurcating tree in a rapid and recent radiation, providing a rare empirical example of a nearly simultaneous series of speciation events in a terrestrial animal lineage as it spreads across an oceanic archipelago.

Next-generation sequencing and phylogenomics hold great promise for elucidating complex relationships among large plant families. Here, we performed targeted capture of low copy sequences followed by next-generation sequencing on the Illumina platform in the large and diverse angiosperm family Compositae (Asteraceae). The family is monophyletic, based on morphology and molecular data, yet many areas of the phylogeny have unresolved polytomies and interpreting phylogenetic patterns has been historically difficult. In order to outline a method and provide a framework and for future phylogenetic studies in the Compositae, we sequenced 23 taxa from across the family in which the relationships were well established as well as a member of the sister family Calyceraceae. We generated nuclear data from 795 loci and assembled chloroplast genomes from off-target capture reads enabling the comparison of nuclear and chloroplast genomes for phylogenetic analyses. We also analyzed multi-copy nuclear genes in our data set using a clustering method during orthology detection, and we applied a network approach to these clusters—analyzing all related locus copies. Using these data, we produced hypotheses of phylogenetic relationships employing both a conservative (restricted to only loci with one copy per targeted locus) and a multigene approach (including all copies per targeted locus). The methods and bioinformatics workflow presented here provide a solid foundation for future work aimed at understanding gene family evolution in the Compositae as well as providing a model for phylogenomic analyses in other plant mega-families.

Premise of the study: Phylogenetic inference is moving to large multilocus data sets, yet there remains uncertainty in the choice of marker and sequencing method at low taxonomic levels. To address this gap, we present a method for enriching long loci spanning intron-exon boundaries in the genus Heuchera. Methods: Two hundred seventy-eight loci were designed using a splice-site prediction method combining transcriptomic and genomic data. Biotinylated probes were designed for enrichment of these loci. Reference-based assembly was performed using genomic references; additionally, chloroplast and mitochondrial genomes were used as references for off-target reads. The data were aligned and subjected to coalescent and concatenated phylogenetic analyses to demonstrate support for major relationships. Results: Complete or nearly complete (>99%) sequences were assembled from essentially all loci from all taxa. Aligned introns showed a fourfold increase in divergence as opposed to exons. Concatenated analysis gave decisive support to all nodes, and support was also high and relationships mostly similar in the coalescent analysis. Organellar phylogenies were also well-supported and conflicted with the nuclear signal. Discussion: Our approach shows promise for resolving a recent radiation. Enrichment for introns is highly successful with little or no sequencing dropout at low taxonomic levels despite higher substitution and indel frequencies, and should be exploited in studies of species complexes.

Phytochromes are red-light photoreceptors in plants that regulate key life cycle processes, yet their evolutionary origins are not well understood. Using transcriptomic and genomic data, Li et al. find that canonical plant phytochromes originated in a common ances…

The Bronze Age of Eurasia (around 3000–1000 BC) was a period of major cultural changes. However, there is debate about whether these changes resulted from the circulation of ideas or from human migrations, potentially also facilitating the spread of languages and certain phenotypic traits. We investigated this by using new, improved methods to sequence low-coverage genomes from 101 ancient humans from across Eurasia. We show that the Bronze Age was a highly dynamic period involving large-scale population migrations and replacements, responsible for shaping major parts of present-day demographic structure in both Europe and Asia. Our findings are consistent with the hypothesized spread of Indo-European languages during the Early Bronze Age. We also demonstrate that light skin pigmentation in Europeans was already present at high frequency in the Bronze Age, but not lactose tolerance, indicating a more recent onset of positive selection on lactose tolerance than previously thought. View full text

* Application of whole-genome capture (WGC) methods to ancient DNA (aDNA) promises to increase efficiency of ancient genome sequencing. * We compared the performance of two recent WGC methods in enriching human aDNA within Illumina libraries built using both double-stranded and single-stranded build protocols. Although both methods effectively enriched aDNA, we observed consistent differences between the methods, providing the opportunity to further explore parameters influencing WGC experiments. * Our results suggest bait length has a potential influence on library enrichment. Moreover, we show WGC biases against shorter molecules that are enriched in single-stranded libraries preparation protocols. Lastly, we document the effect of WGC on features including clonality, GC composition and repetitive DNA content. * Our findings provide insights relevant to those planning WGC on aDNA and suggest future tests and optimization to improve WGC efficiency.

The development of various target enrichment methods in combination with next generation sequencing techniques has greatly facilitated the use of partially degraded DNA samples in genetic studies. We employed the MYbaits target enrichment system in combination with Ion Torrent sequencing on a broad range of DNA quality, extracted from tissues obtained from both natural history archives and through various opportunistic sampling methods, to sequence the mitogenome of 11 mobulid rays and two closely related species. Mobulids are large, elusive pelagic filter feeders, for which conservation concerns have recently be raised in connection to their vulnerable life histories and increasing fishing pressure. We show that the MYbaits target enrichment method can be used to effectively sequence large parts of the mitogenome from heavily degraded DNA samples, and provide a time and cost effective alternative for genetic studies of rare and/or difficult to sample species.

• Premise of the study: The sunflower genus Helianthus has long been recognized as economically significant, containing species of agricultural and horticultural importance. Additionally, this genus displays a large range of phenotypic and genetic variation, making Helianthus a useful system for studying evolutionary and ecological processes. Here we present the most robust Helianthus phylogeny to date, laying the foundation for future studies of this genus. • Methods: We used a target enrichment approach across 37 diploid Helianthus species/subspecies with a total of 103 accessions. This technique garnered 170 genes used for both coalescent and concatenation analyses. The resulting phylogeny was additionally used to examine the evolution of life history and growth form across the genus. • Key results: Coalescent and concatenation approaches were largely congruent, resolving a large annual clade and two large perennial clades. However, several relationships deeper within the phylogeny were more weakly supported and incongruent among analyses including the placement of H. agrestis, H. cusickii, H. gracilentus, H. mollis, and H. occidentalis. • Conclusions: The current phylogeny supports three major clades including a large annual clade, a southeastern perennial clade, and another clade of primarily large-statured perennials. Relationships among taxa are more consistent with early phylogenies of the genus using morphological and crossing data than recent efforts using single genes, which highlight the difficulties of phylogenetic estimation in genera known for reticulate evolution. Additionally, conflict and low support at the base of the perennial clades may suggest a rapid radiation and/or ancient introgression within the genus.

The main objective of this project was to generate a large single nucleotide polymorphism (SNP) marker resource for later saturation of the genetic linkage map and fine mapping of quantitative trait loci (QTL). Another objective of this project was to learn more about basic crocodile biology, namely immune function and stress, and the underlying genetic function to evaluate their incorporation into CrocPLAN. This report describes the development of new phenotypic trait panels for farmed saltwater crocodiles. Among these is the major crocodilian stress hormone, corticosterone (CORT), which should be useful for the development of animal welfare standards and the eventual selection of individuals in the future. Immune assays, some of which have never been previously used in crocodilians, were employed in this project to assess immune function. These immune assays, which are relatively easy to perform and cheap, could be employed in any farming setting to assess immune function in the future. Levels of estradiol (ESTR) and testosterone (TEST) are also detailed in this report, for the first time in the saltwater crocodile. At the same time as trying to expedite industry adoption of genetic improvement programs, it was necessary to expand on the current selection criteria available to gain a deeper insight into the breeding objectives already defined from RIRDC Project US-109A. The traits added were corticosterone (the main crocodilian stress hormone), two immune parameters, two sex hormones (testosterone and estradiol), two behaviour characters and four skin quality traits. Simultaneously, some of these traits could be used to gauge current industry practices which are set out in the “Code of Practice on the humane treatment of wild and farmed Australian crocodiles”. I am pleased to report that the lowest levels of corticosterone ever reported in saltwater crocodiles were found certifying the recommendations set out in the “code of practice”.

Gaining a genomic perspective on phylogeny requires the collection of data from many putatively independent loci across the genome. Among insects, an increasingly common approach to collecting this class of data involves transcriptome sequencing, because few insects have high-quality genome sequences available; assembling new genomes remains a limiting factor; the transcribed portion of the genome is a reasonable, reduced subset of the genome to target; and the data collected from transcribed portions of the genome are similar in composition to the types of data with which biologists have traditionally worked (e.g. exons). However, molecular techniques requiring RNA as a template, including transcriptome sequencing, are limited to using very high-quality source materials, which are often unavailable from a large proportion of biologically important insect samples. Recent research suggests that DNA-based target enrichment of conserved genomic elements offers another path to collecting phylogenomic data across insect taxa, provided that conserved elements are present in and can be collected from insect genomes. Here, we identify a large set (n = 1510) of ultraconserved elements (UCEs) shared among the insect order Hymenoptera. We used in silico analyses to show that these loci accurately reconstruct relationships among genome-enabled hymenoptera, and we designed a set of RNA baits (n = 2749) for enriching these loci that researchers can use with DNA templates extracted from a variety of sources. We used our UCE bait set to enrich an average of 721 UCE loci from 30 hymenopteran taxa, and we used these UCE loci to reconstruct phylogenetic relationships spanning very old (≥220 Ma) to very young (≤1 Ma) divergences among hymenopteran lineages. In contrast to a recent study addressing hymenopteran phylogeny using transcriptome data, we found ants to be sister to all remaining aculeate lineages with complete support, although this result could be explained by factors such as taxon sampling. We discuss this approach and our results in the context of elucidating the evolutionary history of one of the most diverse and speciose animal orders.