Instructions for preparing your dried DNA samples for submission for NGS lab and sequencing services.

Instructions for planning your project and preparing, packaging, and shipping your samples for NGS lab and sequencing services.

Flexible, customizable options for different sample and project types. Pick a package that fits your
project needs or mix and match!

By placing an order that includes myReads service line items, the Client agrees to the service policies and commitments described in this document.

Early natural historians—Comte de Buffon, von Humboldt, and De Candolle—established environment and geography as two principal axes determining the distribution of groups of organisms, laying the foundations for biogeography over the subsequent 200 years, yet the relative importance of these two axes remains unresolved. Leveraging phylogenomic and global species distribution data for Mimosoid legumes, a pantropical plant clade of c. 3500 species, we show that the water availability gradient from deserts to rain forests dictates turnover of lineages within continents across the tropics. We demonstrate that 95% of speciation occurs within a precipitation niche, showing profound phylogenetic niche conservatism, and that lineage turnover boundaries coincide with isohyets of precipitation. We reveal similar patterns on different continents, implying that evolution and dispersal follow universal processes. , Water availability dictates patterns of global phylogenetic beta diversity in tropical plants.

Since emerging in Brazil in 1985, wheat blast has spread throughout South America and recently appeared in Bangladesh and Zambia. Here we show that two wheat resistance genes, Rwt3 and Rwt4, acting as host-specificity barriers against non-Triticum blast pathotypes encode a nucleotide-binding leucine-rich repeat immune receptor and a tandem kinase, respectively. Molecular isolation of these genes will enable study of the molecular interaction between pathogen effector and host resistance genes.

Abstract Phylogenomic analysis of large genome-wide sequence data sets can resolve phylogenetic tree topologies for large species groups, help test the accuracy of and improve resolution for earlier multilocus studies and reveal the level of agreement or concordance within partitions of the genome for various tree topologies. Here we used a target-capture approach to sequence 1,088 single-copy exons for more than 200 labrid fishes together with more than 100 outgroup taxa to generate a new data-rich phylogeny for the family Labridae. Our time-calibrated phylogenetic analysis of exon-capture data pushes the root node age of the family Labridae back into the Cretaceous to about 79 Ma years ago. The monotypic Centrogenys vaigiensis, and the order Uranoscopiformes (stargazers) are identified as the sister lineages of Labridae. The phylogenetic relationships among major labrid subfamilies and within these clades were largely congruent with prior analyses of select mitochondrial and nuclear datasets. However, the position of the tribe Cirrhilabrini (fairy and flame wrasses) showed discordance, resolving either as the sister to a crown julidine clade or alternatively sister to a group formed by the labrines, cheilines and scarines. Exploration of this pattern using multiple approaches leads to slightly higher support for this latter hypothesis, highlighting the importance of genome-level data sets for resolving short internodes at key phylogenetic positions in large, economically important groups of coral reef fishes. More broadly, we demonstrate how accounting for sources of biological variability from incomplete lineage sorting and exploring systematic error at conflicting nodes can aid in evaluating alternative phylogenetic hypotheses.

Species- and genetic diversity can change in parallel, resulting in a species-genetic diversity correlation (SGDC) and raising the question if the same drivers influence both biological levels of diversity. The SGDC can be either positive or negative, depending on whether the species diversity and the genetic diversity of the measured species respond in the same or opposite way to drivers. Using a traditional species diversity approach together with ultra-conserved elements and high throughput sequencing, we evaluated the SGDCs in benthic macrofauna communities in the Baltic Sea, a geologically young brackish water sea characterised by its steep salinity gradient and low species richness. Assessing SGDCs from six focal marine invertebrate species from different taxonomic groups and with differing life histories and ecological functions on both a spatial and temporal scale gives a more comprehensive insight into the community dynamics of this young ecosystem and the extrinsic factors that might drive the SGDCs.