myBaits Custom DNA-Seq capture kits provide rapid, selective enrichment of target regions of interest from NGS libraries built from DNA samples.

myBaits Custom Methyl-Seq kits provide deep sequencing of target regions from NGS libraries of bisulfite- or enzymatic-converted DNA samples.

American bison demonstrated differential patterns of extinction, survival, and expansion since the terminal Pleistocene. We determined population dynamics of the Northern Great Plains bison using 40 mitochondrial genomes from radiocarbon dated remains with the age ranging from 12,226 to 167 calibrated years before present. Population dynamics correlated with environmental and anthropogenic factors and was characterized by three primary periods: terminal Pleistocene population growth starting 14,000 years ago, mid Holocene demographic stability between 6700 and 2700 years ago, and late Holocene population decline in the last 2700 years. Most diversification of mtDNA haplotypes occurred in the early Holocene when bison colonized new territories opened by retreating ice sheets. Holocene mtDNA lineages were not found in modern bison and lacked association with archaeological sites and morphological forms.

The metabarcoding of vertebrate DNA found in invertebrate-derived DNA (iDNA) has proven a powerful tool for monitoring biodiversity. To date, iDNA has primarily been used to detect the presence/absence of particular taxa using metabarcoding, though recent efforts demonstrated the potential utility of these data for estimating relative animal abundance. Here, we test whether iDNA can also be used to reconstruct complete mammalian mitogenomes and therefore bring the field closer to population-level analyses. Specifically, we used mitogenomic hybridization capture coupled with high-throughput sequencing to analyze individual (N = 7) or pooled (N = 5) fly-derived DNA extracts, and individual (N = 7) or pooled (N = 1) leech-derived DNA extracts, which were known a priori to contain primate DNA. All sources of iDNA showed their ability to generate large amounts of mammalian mitogenomic information and deeper sequencing of libraries is predicted to allow for even more complete recovery of primate mitogenomes from most samples (90%). Sixty percent of these iDNA extracts allowed for the recovery of (near) complete mammalian mitochondrial genomes (hereafter mitogenomes) that proved useable for phylogenomic analyses. These findings contribute to paving the way for iDNA-based population mitogenomic studies of terrestrial mammals.

Manual for myBaits Expert Wheat Exome and Wheat Regulome kits (v1.53)

Manual for myBaits Custom Methyl-Seq hybridization capture kits (v1.53)

Manual for myBaits hybridization capture kits, V5 reagents (v5.03)

Extinct lineages of Yersinia pestis, the causative agent of the plague, have been identified in several individuals from Eurasia between 5000 and 2500 years before present (BP). One of these, termed the ‘LNBA lineage’ (Late Neolithic and Bronze Age), has been suggested to have spread into Europe with human groups expanding from the Eurasian steppe. Here, we show that the LNBA plague was spread to Europe’s northwestern periphery by sequencing three Yersinia pestis genomes from Britain, all dating to ~4000 cal BP. Two individuals were from an unusual mass burial context in Charterhouse Warren, Somerset, and one individual was from a single burial under a ring cairn monument in Levens, Cumbria. To our knowledge, this represents the earliest evidence of LNBA plague in Britain documented to date. All three British Yersinia pestis genomes belong to a sublineage previously observed in Bronze Age individuals from Central Europe that had lost the putative virulence factor yapC. This sublineage is later found in Eastern Asia ~3200 cal BP. While the severity of the disease is currently unclear, the wide geographic distribution within a few centuries suggests substantial transmissibility.

This study assessed the usefulness of DNA quantification to predict the success of historical samples when analyzing SNPs, mtDNA, and STR targets. Thirty burials from six historical contexts were utilized, ranging in age from 80 to 800 years postmortem. Samples underwent library preparation and hybridization capture with two bait panels (FORCE and mitogenome), and STR typing (autosomal STR and Y-STR). All 30 samples generated small (~80 bp) autosomal DNA target qPCR results, despite mean mappable fragments ranging from 55–125 bp. The qPCR results were positively correlated with DNA profiling success. Samples with human DNA inputs as low as 100 pg resulted in ≥80% FORCE SNPs at 10X coverage. All 30 samples resulted in mitogenome coverage ≥100X despite low human DNA input (as low as 1 pg). With PowerPlex Fusion, ≥30 pg human DNA input resulted in >40% of auSTR loci. At least 59% of Y-STR loci were recovered with Y-target qPCR-based inputs of ≥24 pg. The results also indicate that human DNA quantity is a better predictor of success than the ratio of human to exogenous DNA. Accurate quantification with qPCR is feasible for historical bone samples, allowing for the screening of extracts to predict the success of DNA profiling.

Recent excavations of Late Antiquity settlements in the Negev Highlands of southern Israel uncovered a society that established commercial-scale viticulture in an arid environment [D. Fuks et al., Proc. Natl. Acad. Sci. U.S.A. 117, 19780–19791 (2020)]. We applied target-enriched genome-wide sequencing and radiocarbon dating to examine grapevine pips that were excavated at three of these sites. Our analyses revealed centuries long and continuous grape cultivation in the Southern Levant. The genetically diverse pips also provided clues to ancient cultivation strategies aimed at improving agricultural productivity and ensuring food security. Applying genomic prediction analysis, a pip dated to the eighth century CE was determined to likely be from a white grape, to date the oldest to be identified. In a kinship analysis, another pip was found to be descendant from a modern Greek cultivar and was thus linked with several popular historic wines that were once traded across the Byzantine Empire. These findings shed light on historical Byzantine trading networks and on the genetic contribution of Levantine varieties to the classic Aegean landscape.