Dr. Ben Steil presents this Lightning Talk at SynBioBeta 2023 in the Reading, Writing, and Editing DNA category.

This webinar features the contributions of Strateos and Daicel Arbor Biosciences to the fields of protein engineering and drug discovery.

Abstract Certain CRISPR-Cas elements integrate into Tn7-like transposons, forming CRISPR-associated transposon (CAST) systems. How the activity of these systems is controlled in situ has remained largely unknown. Here we characterize the MerR-type transcriptional regulator Alr3614 that is encoded by one of the CAST (AnCAST) system genes in the genome of cyanobacterium Anabaena sp. PCC 7120. We identify a number of Alr3614 homologs across cyanobacteria and suggest naming these regulators CvkR for Cas V-K repressors. Alr3614/CvkR is translated from leaderless mRNA and represses the AnCAST core modules cas12k and tnsB directly, and indirectly the abundance of the tracr-CRISPR RNA. We identify a widely conserved CvkR binding motif 5’-AnnACATnATGTnnT-3’. Crystal structure of CvkR at 1.6 Å resolution reveals that it comprises distinct dimerization and potential effector-binding domains and that it assembles into a homodimer, representing a discrete structural subfamily of MerR regulators. CvkR repressors are at the core of a widely conserved regulatory mechanism that controls type V-K CAST systems.

In this webinar, we present a protein synthesis workflow leveraging myTXTL® with high-fidelity dsDNA gBlocks™ Gene Fragments from IDT.

Abstract Cell-free protein synthesis has been widely used as a “breadboard” for design of synthetic genetic networks. However, due to a severe lack of modularity, forward engineering of genetic networks remains challenging. Here, we demonstrate how a combination of optimal experimental design and microfluidics allows us to devise dynamic cell-free gene expression experiments providing maximum information content for subsequent non-linear model identification. Importantly, we reveal that applying this methodology to a library of genetic circuits, that share common elements, further increases the information content of the data resulting in higher accuracy of model parameters. To show modularity of model parameters, we design a pulse decoder and bistable switch, and predict their behaviour both qualitatively and quantitatively. Finally, we update the parameter database and indicate that network topology affects parameter estimation accuracy. Utilizing our methodology provides us with more accurate model parameters, a necessity for forward engineering of complex genetic networks.

myTXTL can produce a range of biocatalysts with diverse functions, sizes, and cofactor requirements much faster than traditional in vivo expression.