Safety Data Sheet (SDS) for myTXTL Sigma 70 Master Mix Bulk. US version

Safety Data Sheet (SDS) for myTXTL Sigma 70 Master Mix Bulk. EU version

Safety Data Sheet (SDS) for myTXTL Sigma 70 Master Mix Kit. US version

Safety Data Sheet (SDS) for myTXTL Sigma 70 Master Mix Kit. EU version

Safety Data Sheet (SDS) for myTXTL T7 DNA Expression Kit. US version

Safety Data Sheet (SDS) for myTXTL T7 DNA Expression Kit. EU version

Cas12a enzymes are quickly being adopted for use in a variety of genome-editing applications. These programmable nucleases are part of adaptive microbial immune systems, the natural diversity of which has been largely unexplored. Here, we identified novel families of Type V-A CRISPR nucleases through a large-scale analysis of metagenomes collected from a variety of complex environments, and developed representatives of these systems into geneediting platforms. The nucleases display extensive protein variation and can be programmed by a single-guide RNA with specific motifs. The majority of these enzymes are part of systems recovered from uncultivated organisms, some of which also encode a divergent Type V effector. Biochemical analysis uncovered unexpected protospacer adjacent motif diversity, indicating that these systems will facilitate a variety of genome-engineering applications. The simplicity of guide sequences and activity in human cell lines suggest utility in gene and cell therapies.

Building an artificial cell is a research area that is rigorously studied in the field of synthetic biology. It has brought about much attention with the aim of ultimately constructing a natural cell-like structure. In particular, with the more mature cell-free platforms and various compartmentalization methods becoming available, achieving this aim seems not far away. In this review, we discuss the various types of artificial cells capable of hosting several cellular functions. Different compartmental boundaries and the mature and evolving technologies that are used for compartmentalization are examined, and exciting recent advances that overcome or have the potential to address current challenges are discussed. Ultimately, we show how compartmentalization and cell-free systems have, and will, come together to fulfill the goal to assemble a fully synthetic cell that displays functionality and complexity as advanced as that in nature. The development of such artificial cell systems will offer insight into the fundamental study of evolutionary biology and the sea of applications as a result. Although several challenges remain, emerging technologies such as artificial intelligence also appear to help pave the way to address them and achieve the ultimate goal.

CRISPR guide RNAs (gRNAs) can be programmed with relative ease to allow the genetic editing of nearly any DNA or RNA sequence. Here, we propose novel molecular architectures to achieve RNA-dependent modulation of CRISPR activity in response to specific RNA molecules. We designed and tested, in both living Escherichia coli cells and cell-free assays for rapid prototyping, cis-repressed RNA-interacting guide RNA (igRNA) that switch to their active state only upon interaction with small RNA fragments or long RNA transcripts, including pathogen-derived mRNAs of medical relevance such as the human immunodeficiency virus infectivity factor. The proposed CRISPR-igRNAs are fully customizable and easily adaptable to the majority if not all the available CRISPR-Cas variants to modulate a variety of genetic functions in response to specific cellular conditions, providing orthogonal activation and increased specificity. We thereby foresee a large scope of application for therapeutic, diagnostic, and biotech applications in both prokaryotic and eukaryotic systems.

We present a protocol to rapidly test DNA binding and cleavage activity by CRISPR nucleases using cell-free transcription-translation (TXTL). Nuclease activity is assessed by adding DNA encoding a nuclease, a guide RNA, and a targeted reporter to a TXTL reaction and by measuring the fluorescence for several h. The reactions, performed in a few microliters, allow for parallel testing of many nucleases and guide RNAs. The protocol includes representative results for (d)Cas9 from Streptococcus pyogenes targeting a GFP reporter gene. For complete information on the generation and use of this protocol, please refer to the paper by Marshall et al. (2018).