Evolutionary radiations are prominent and pervasive across many plant lineages in diverse geographical and ecological settings; in neotropical rainforests there is growing evidence suggesting that a significant fraction of species richness is the result of recent radiations. Understanding the evolutionary trajectories and mechanisms underlying these radiations demands much greater phylogenetic resolution than is currently available for these groups. The neotropical tree genus Inga (Leguminosae) is a good example, with ~300 extant species and a crown age of 2-10 MY, yet over 6kb of plastid and nuclear DNA sequence data gives only poor phylogenetic resolution among species. Here we explore the use of larger-scale nuclear gene data obtained though targeted enrichment to increase phylogenetic resolution within Inga. Transcriptome data from three Inga species were used to select 264 nuclear loci for targeted enrichment and sequencing. Following quality control to remove probable paralogs from these sequence data, the final dataset comprised 259,313 bases from 194 loci for 24 accessions representing 22 Inga species and an outgroup (Zygia). Bayesian phylogenies reconstructed using either all loci concatenated or a subset of 60 loci in a gene-tree/species-tree approach yielded highly resolved phylogenies. We used coalescent approaches to show that the same targeted enrichment data also have significant power to discriminate among alternative within-species population histories in the widespread species I. umbellifera. In either application, targeted enrichment simplifies the informatics challenge of identifying orthologous loci associated with de novo genome sequencing. We conclude that targeted enrichment provides the large volumes of phylogenetically-informative sequence data required to resolve relationships within recent plant species radiations, both at the species level and for within-species phylogeographic studies.

Toward an “artificial cell” on a chip Cell-free systems that reconstitute biochemical pathways have been critical for unraveling the inner workings of the cell. Karzbrun et al. created a highly miniaturized cell-free system on a silicon chip. A series of tiny linked compartments were fabricated on the chip, in which DNA-driven reactions occurred, with materials flowing into and diffusing between the compartments. The system recreated oscillating protein expression patterns and protein gradients, and provides a stepping stone to creating “artificial cells” on a chip. Science, this issue p. 829 The assembly of artificial cells capable of executing synthetic DNA programs has been an important goal for basic research and biotechnology. We assembled two-dimensional DNA compartments fabricated in silicon as artificial cells capable of metabolism, programmable protein synthesis, and communication. Metabolism is maintained by continuous diffusion of nutrients and products through a thin capillary, connecting protein synthesis in the DNA compartment with the environment. We programmed protein expression cycles, autoregulated protein levels, and a signaling expression gradient, equivalent to a morphogen, in an array of interconnected compartments at the scale of an embryo. Gene expression in the DNA compartment reveals a rich, dynamic system that is controlled by geometry, offering a means for studying biological networks outside a living cell. DNA-driven biochemical reactions on a fabricated silicon chip recreate protein gradients and oscillations. DNA-driven biochemical reactions on a fabricated silicon chip recreate protein gradients and oscillations.

Accelerating the pace of synthetic biology experiments requires new approaches for rapid prototyping of circuits from individual DNA regulatory elements. However, current testing standards require days to weeks due to cloning and in vivo transformation. In this work, we first characterized methods to protect linear DNA strands from exonuclease degradation in an Escherichia coli based transcription-translation cell-free system (TX-TL), as well as mechanisms of degradation. This enabled the use of linear DNA PCR products in TX-TL. We then compared expression levels and binding dynamics of different promoters on linear DNA and plasmid DNA. We also demonstrated assembly technology to rapidly build circuits entirely in vitro from separate parts. Using this strategy, we prototyped a four component genetic switch in under 8 h entirely in vitro. Rapid in vitro assembly has future applications for prototyping multiple component circuits if combined with predictive computational models.

Custom-defined oligonucleotide collections have a broad range of applications in fields of synthetic biology, targeted sequencing, and cytogenetics. Also, they are used to encode information for technologies like RNA interference, protein engineering and DNA-encoded libraries. High-throughput parallel DNA synthesis technologies developed for the manufacture of DNA microarrays can produce libraries of large numbers of different oligonucleotides, but in very limited amounts. Here, we compare three approaches to prepare large quantities of single-stranded oligonucleotide libraries derived from microarray synthesized collections. The first approach, alkaline melting of double-stranded PCR amplified libraries with a biotinylated strand captured on streptavidin coated magnetic beads results in little or no non-biotinylated ssDNA. The second method wherein the phosphorylated strand of PCR amplified libraries is nucleolyticaly hydrolyzed is recommended when small amounts of libraries are needed. The third method combining in vitro transcription of PCR amplified libraries to reverse transcription of the RNA product into single-stranded cDNA is our recommended method to produce large amounts of oligonucleotide libraries. Finally, we propose a method to remove any primer binding sequences introduced during library amplification.

Cell-free protein synthesis is becoming a useful technique for synthetic biology. As more applications are developed, the demand for novel and more powerful in vitro expression systems is increasing. In this work, an all Escherichia coli cell-free system, that uses the endogenous transcription and translation molecular machineries, is optimized to synthesize up to 2.3 mg/ml of a reporter protein in batch mode reactions. A new metabolism based on maltose allows recycling of inorganic phosphate through its incorporation into newly available glucose molecules, which are processed through the glycolytic pathway to produce more ATP. As a result, the ATP regeneration is more efficient and cell-free protein synthesis lasts up to 10 h. Using a commercial E. coli strain, we show for the first time that more than 2 mg/ml of protein can be synthesized in run-off cell-free transcription–translation reactions by optimizing the energy regeneration and waste products recycling. This work suggests that endogenous enzymes present in the cytoplasmic extract can be used to implement new metabolic pathways for increasing protein yields. This system is the new basis of a cell-free gene expression platform used to construct and to characterize complex biochemical processes in vitro such as gene circuits.

There is an increasing interest to express and study membrane proteins in vitro. New techniques to produce and insert functional membrane proteins into planar lipid bilayers have to be developed. In this work, we produce a tethered lipid bilayer membrane (tBLM) to provide sufficient space for the incorporation of the integral membrane protein (IMP) Aquaporin Z (AqpZ) between the tBLM and the surface of the sensor. We use a gold (Au)-coated sensor surface compatible with mechanical sensing using a quartz crystal microbalance with dissipation monitoring (QCM-D) or optical sensing using the surface plasmon resonance (SPR) method. tBLM is produced by vesicle fusion onto a thin gold film, using phospholipid-polyethylene glycol (PEG) as a spacer. Lipid vesicles are composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethyleneglycol)-2000-N-[3-(2-pyridyldithio)propionate], so-called DSPE-PEG-PDP, at different molar ratios (respectively, 99.5/0.5, 97.5/2.5, and 95/5 mol %), and tBLM formation is characterized using QCM-D, SPR, and atomic force technology (AFM). We demonstrate that tBLM can be produced on the gold surface after rupture of the vesicles using an α helical (AH) peptide, derived from hepatitis C virus NS5A protein, to assist the fusion process. A cell-free expression system producing the E. coli integral membrane protein Aquaporin Z (AqpZ) is directly incubated onto the tBLMs for expression and insertion of the IMP at the upper side of tBLMs. The incorporation of AqpZ into bilayers is monitored by QCM-D and compared to a control experiment (without plasmid in the cell-free expression system). We demonstrate that an IMP such as AqpZ, produced by a cell-free expression system without any protein purification, can be incorporated into an engineered tBLM preassembled at the surface of a gold-coated sensor.

A host of observations demonstrating the relationship between nuclear architecture and processes such as gene expression have led to a number of new technologies for interrogating chromosome positioning. Whereas some of these technologies reconstruct intermolecular interactions, others have enhanced our ability to visualize chromosomes in situ. Here, we describe an oligonucleotide- and PCR-based strategy for fluorescence in situ hybridization (FISH) and a bioinformatic platform that enables this technology to be extended to any organism whose genome has been sequenced. The oligonucleotide probes are renewable, highly efficient, and able to robustly label chromosomes in cell culture, fixed tissues, and metaphase spreads. Our method gives researchers precise control over the sequences they target and allows for single and multicolor imaging of regions ranging from tens of kilobases to megabases with the same basic protocol. We anticipate this technology will lead to an enhanced ability to visualize interphase and metaphase chromosomes.

The synthesis of living entities in the laboratory is a standing challenge that calls for innovative approaches. Using a cell-free transcription-translation system as a molecular programming platform, we show that the bacteriophage T7, encoded by a 40 kbp DNA program composed of about 60 genes, can be entirely synthesized from its genomic DNA in a test tube reaction. More than a billion infectious bacteriophages T7 per milliliter of reaction are produced after a few hours of incubation. The replication of the genomic DNA occurs concurrently with phage gene expression, protein synthesis, and viral assembly. The demonstration that genome-sized viral DNA can be expressed in a test tube, recapitulating the entire chain of information processing including the replication of the DNA instructions, opens new possibilities to program and to study complex biochemical systems in vitro.