Although recent molecular phylogenetic analyses of Lepidothrix manakins (family Pipridae) have helped clarify their evolutionary relationships, the placement of several lineages remains in question because of low or conflicting branch support. In particular, the relationship of L. coronata to other members of the genus and relationships within the L. nattereri + L. vilasboasi + L. iris clade have been difficult to resolve. We used RADcap to collect restriction site-associated DNA sequence data and estimate the first subspecies-level phylogeny of the genus Lepidothrix (17 of 18 currently recognized subspecies), and we included extensive geographic representation of the widespread and phenotypically variable L. coronata. We found strong support for the phylogenetic position and monophyly of L. coronata, and we resolved two clades separated by the Andes that, along with previous divergence time estimates and our assessment of morphological and vocal evidence, suggest the presence of two biological species: Velvety Manakin (L. velutina) west of the Andes and Blue-capped Manakin (L. coronata) east of the Andes. Species-level relationships within the L. nattereri + L. vilasboasi + L. iris clade remained poorly resolved in concatenated and coalescent-based analyses, with SNAPP analyses suggesting that the lack of reciprocal monophyly is due to extensive allele sharing among these taxa. Finally, we confirmed a previously documented hybrid between L. coronata and L. suavissima as an F1 individual, consistent with the view that hybridization between these two species is a rare event and that postmating reproductive barriers prevent successful backcrossing.
Human herpes simplex virus 1 (HSV-1), a life-long infection spread by oral contact, infects a majority of adults globally. Phylogeographic clustering of sampled diversity into European, pan-Eurasian, and African groups has suggested the virus codiverged with human migrations out of Africa, although a much younger origin has also been proposed. We present three full ancient European HSV-1 genomes and one partial genome, dating from the 3rd to 17th century CE, sequenced to up to 9.5× with paired human genomes up to 10.16×. Considering a dataset of modern and ancient genomes, we apply phylogenetic methods to estimate the age of sampled modern Eurasian HSV-1 diversity to 4.68 (3.87 to 5.65) ka. Extrapolation of estimated rates to a global dataset points to the age of extant sampled HSV-1 as 5.29 (4.60 to 6.12) ka, suggesting HSV-1 lineage replacement coinciding with the late Neolithic period and following Bronze Age migrations. , Medieval human herpes simplex virus 1 genomes implicate Bronze Age migrations in lineage distribution in Eurasia.
Pandemics originating from non-human animals highlight the need to understand how natural hosts have evolved in response to emerging human pathogens and which groups may be susceptible to infection and/or potential reservoirs to mitigate public health and conservation concerns. Multiple zoonotic coronaviruses, such as severe acute respiratory syndrome-associated coronavirus (SARS-CoV), SARS-CoV-2 and Middle Eastern respiratory syndrome-associated coronavirus (MERS-CoV), are hypothesized to have evolved in bats. We investigate angiotensin-converting enzyme 2 (ACE2), the host protein bound by SARS-CoV and SARS-CoV-2, and dipeptidyl-peptidase 4 (DPP4 or CD26), the host protein bound by MERS-CoV, in the largest bat datasets to date. Both the ACE2 and DPP4 genes are under strong selection pressure in bats, more so than in other mammals, and in residues that contact viruses. Additionally, mammalian groups vary in their similarity to humans in residues that contact SARS-CoV, SARS-CoV-2 and MERS-CoV, and increased similarity to humans in binding residues is broadly predictive of susceptibility to SARS-CoV-2. This work augments our understanding of the relationship between coronaviruses and mammals, particularly bats, provides taxonomically diverse data for studies of how host proteins are bound by coronaviruses and can inform surveillance, conservation and public health efforts.
Body size is an important species trait, correlating with life span, fecundity, and other ecological factors. Over Earth’s geological history, climate shifts have occurred, potentially shaping body size evolution in many clades. General rules attempting to summarize body size evolution include Bergmann’s rule, which states that species reach larger sizes in cooler environments and smaller sizes in warmer environments, and Cope’s rule, which poses that lineages tend to increase in size over evolutionary time. Tetraodontiform fishes (including pufferfishes, boxfishes, and ocean sunfishes) provide an extraordinary clade to test these rules in ectotherms owing to their exemplary fossil record and the great disparity in body size observed among extant and fossil species. We examined Bergmann’s and Cope’s rules in this group by combining phylogenomic data (1,103 exon loci from 185 extant species) with 210 anatomical characters coded from both fossil and extant species. We aggregated data layers on paleoclimate and body size from the species examined, and inferred a set of time-calibrated phylogenies using tip-dating approaches for downstream comparative analyses of body size evolution by implementing models that incorporate paleoclimatic information. We found strong support for a temperature-driven model in which increasing body size over time is correlated with decreasing oceanic temperatures. On average, extant tetraodontiforms are two to three times larger than their fossil counterparts, which otherwise evolved during periods of warmer ocean temperatures. These results provide strong support for both Bergmann’s and Cope’s rules, trends that are less studied in marine fishes compared to terrestrial vertebrates and marine invertebrates.
Convolvulaceae is a family of c. 2,000 species, distributed across 60 currently recognized genera. It includes species of high economic importance, such as the crop sweet potato ( Ipomoea batatas L.), the ornamental morning glories ( Ipomoea L.), bindweeds ( Convolvulus L.), and dodders, the parasitic vines ( Cuscuta L.). Earlier phylogenetic studies, based predominantly on chloroplast markers or a single nuclear region, have provided a framework for systematic studies of the family, but uncertainty remains at the level of the relationships among subfamilies, tribes, and genera, hindering evolutionary inferences and taxonomic advances. One of the enduring enigmas has been the relationship of Cuscuta to the rest of Convolvulaceae. Other examples of unresolved issues include the monophyly and relationships within Merremieae, the “bifid-style” clade (Dicranostyloideae), as well as the relative positions of Erycibe Roxb. and Cardiochlamyeae. In this study, we explore a large dataset of nuclear genes generated using Angiosperms353 kit, as a contribution to resolving some of these remaining phylogenetic uncertainties within Convolvulaceae. For the first time, a strongly supported backbone of the family is provided. Cuscuta is confirmed to belong within family Convolvulaceae. “Merremieae,” in their former tribal circumscription, are recovered as non-monophyletic, with the unexpected placement of Distimake Raf. as sister to the clade that contains Ipomoeeae and Decalobanthus Ooststr., and Convolvuleae nested within the remaining “Merremieae.” The monophyly of Dicranostyloideae, including Jacquemontia Choisy, is strongly supported, albeit novel relationships between genera are hypothesized, challenging the current tribal delimitation. The exact placements of Erycibe and Cuscuta remain uncertain, requiring further investigation. Our study explores the benefits and limitations of increasing sequence data in resolving higher-level relationships within Convolvulaceae, and highlights the need for expanded taxonomic sampling, to facilitate a much-needed revised classification of the family.
Southern East Asia is the dispersal center regarding the prehistoric settlement and migrations of modern humans in Asia-Pacific regions. However, the settlement pattern and population structure of paleolithic humans in this region remain elusive, and ancient DNA can provide direct information. Here, we sequenced the genome of a Late Pleistocene hominin (MZR), dated ∼14.0 thousand years ago from Red Deer Cave located in Southwest China, which was previously reported possessing mosaic features of modern and archaic hominins. MZR is the first Late Pleistocene genome from southern East Asia. Our results indicate that MZR is a modern human who represents an early diversified lineage in East Asia. The mtDNA of MZR belongs to an extinct basal lineage of the M9 haplogroup, reflecting a rich matrilineal diversity in southern East Asia during the Late Pleistocene. Combined with the published data, we detected clear genetic stratification in ancient southern populations of East/Southeast Asia and some degree of south-versus-north divergency during the Late Pleistocene, and MZR was identified as a southern East Asian who exhibits genetic continuity to present day populations. Markedly, MZR is linked deeply to the East Asian ancestry that contributed to First Americans.
The global market of the medicinal plant ginseng is worth billions of dollars. Many ginseng species are threatened in the wild and effective sustainable development initiatives are necessary to preserve biodiversity at species and genetic level whilst meeting the demand for medicinal produce. This is also the case of Panax vietnamensis Ha & Grushv., an endemic and threatened ginseng species in Vietnam that is locally cultivated at different scales and has been the object of national breeding programs. To investigate the genetic diversity within cultivated and wild populations of P. vietnamensis we captured 353 nuclear markers using the Angiosperm-353 probe set. Genetic diversity and population structure were evaluated for 319 individuals of Vietnamese ginseng across its area of distribution and from wild and a varying range of cultivated areas. In total, 319 individuals were sampled. After filtering, 1,181 SNPs were recovered. From the population statistics, we observe high genetic diversity and high genetic flow between populations. This is also supported by the STRUCTURE analysis. The intense gene flow between populations and very low genetic differentiation is observed regardless of the populations’ wild or cultivated status. High levels of admixture from two ancestral populations exist in both wild and cultivated samples. The high gene flow between populations can be attributed to ancient and on-going practices of cultivation, which exist in a continuum from understorey, untended breeding to irrigated farm cultivation and to trade and exchange activities. These results highlight the importance of partnering with indigenous peoples and local communities and taking their knowledge into account for biodiversity conservation and sustainable development of plants of high cultural value.
The generic placement of the enigmatic and extinct Logania depressa from New Zealand has been uncertain due to the paucity of available plant material. This diminutive plant has only been collected once from the central North Island, New Zealand, by William Colenso on 22 February 1847. Logania depressa is dioecious and the single collection comprises only male flowers and does not include female flowers or fruit that feature generic diagnostic characters. Previously its relationship to Geniostoma has been considered and its affinities to Orianthera are unknown. Orianthera has been recently recognised as a segregate of Logania. Using leaf material from a small fragment of L. depressa held in Allan Herbarium (CHR) we recovered 9,368 bp of plastid sequence data that mapped to Mitreola yangchuensis, with Mitreola being the closest generic relative of Logania for which whole genome data was available. Available genetic data for Loganiaceae is limited to several chloroplast markers, including the rps16 intron, petD intron, and petD–petB intergenic spacer. From the novel plastid sequence data for Logania depressa, 48 bp of the rps16 intron, 45 bp of the petD intron and 49 bp of the petD–petB intergenic spacer could be recovered to compare with available Loganiaceae sequences. Phylogenetic analysis of these sequences confirmed L. depressa as the only New Zealand member of Logania sens. str., but its relationships to Australian species are unresolved.
Ann Arbor, MI 48103
(d/b/a Daicel Arbor Biosciences)
All Rights Reserved.