As part of the ongoing bacterial-phage arms race, CRISPR-Cas systems in bacteria clear invading phages whereas anti-CRISPR proteins (Acrs) in phages inhibit CRISPR defenses. Known Acrs have proven extremely diverse, complicating their identification. Here, we report a deep learning algorithm for Acr identification that revealed an Acr against type VI-B CRISPR-Cas systems. The algorithm predicted numerous putative Acrs spanning almost all CRISPR-Cas types and subtypes, including over 7,000 putative type IV and VI Acrs not predicted by other algorithms. By performing a cell-free screen for Acr hits against type VI-B systems, we identified a potent inhibitor of Cas13b nucleases we named AcrVIB1. AcrVIB1 blocks Cas13b-mediated defense against a targeted plasmid and lytic phage, and its inhibitory function principally occurs upstream of ribonucleoprotein complex formation. Overall, our work helps expand the known Acr universe, aiding our understanding of the bacteria-phage arms race and the use of Acrs to control CRISPR technologies.

Genomic data contribute invaluable information to the epidemiological investigation of pathogens of public health importance. However, whole-genome sequencing (WGS) of bacteria typically relies on culture, which represents a major hurdle for generating such data for a wide range of species for which culture is challenging. In this study, we assessed the use of culture-free target-enrichment sequencing as a method for generating genomic data for two bacterial species: (1) Bacillus anthracis, which causes anthrax in both people and animals and whose culture requires high-level containment facilities; and (2) Mycoplasma amphoriforme , a fastidious emerging human respiratory pathogen. We obtained high-quality genomic data for both species directly from clinical samples, with sufficient coverage (>15×) for confident variant calling over at least 80% of the baited genomes for over two thirds of the samples tested. Higher qPCR cycle threshold (Ct) values (indicative of lower pathogen concentrations in the samples), pooling libraries prior to capture, and lower captured library concentration were all statistically associated with lower capture efficiency. The Ct value had the highest predictive value, explaining 52 % of the variation in capture efficiency. Samples with Ct values ≤30 were over six times more likely to achieve the threshold coverage than those with a Ct > 30. We conclude that target-enrichment sequencing provides a valuable alternative to standard WGS following bacterial culture and creates opportunities for an improved understanding of the epidemiology and evolution of many clinically important pathogens for which culture is challenging.,

The subgenus Laurentomantis in the genus Gephyromantis contains some of the least known amphibian species of Madagascar. The six currently valid nominal species are rainforest frogs known from few individuals, hampering a full understanding of the species diversity of the clade. We assembled data on specimens collected during field surveys over the past 30 years and integrated analysis of mitochondrial and nuclear-encoded genes of 88 individuals, a comprehensive bioacoustic analysis, and morphological comparisons to delimit a minimum of nine species-level lineages in the subgenus. To clarify the identity of the species Gephyromantis malagasius, we applied a target-enrichment approach to a sample of the 110 year-old holotype of Microphryne malagasia Methuen and Hewitt, 1913 to assign this specimen to a lineage based on a mitochondrial DNA barcode. The holotype clustered unambiguously with specimens previously named G. ventrimaculatus. Consequently we propose to consider Trachymantis malagasia ventrimaculatus Angel, 1935 as a junior synonym of Gephyromantis malagasius. Due to this redefinition of G. malagasius, no scientific name is available for any of the four deep lineages of frogs previously subsumed under this name, all characterized by red color ventrally on the hindlimbs. These are here formally named as Gephyromantis fiharimpe sp. nov., G. matsilo sp. nov., G. oelkrugi sp. nov., and G. portonae sp. nov. The new species are distinguishable from each other by genetic divergences of >4% uncorrected pairwise distance in a fragment of the 16S rRNA marker and a combination of morphological and bioacoustic characters. Gephyromantis fiharimpe and G. matsilo occur, respectively, at mid-elevations and lower elevations along a wide stretch of Madagascar’s eastern rainforest band, while G. oelkrugi and G. portonae appear to be more range-restricted in parts of Madagascar’s North East and Northern Central East regions. Open taxonomic questions surround G. horridus, to which we here assign specimens from Montagne d’Ambre and the type locality Nosy Be; and G. ranjomavo, which contains genetically divergent populations from Marojejy, Tsaratanana, and Ampotsidy.

Abstract Understanding how historical and contemporary processes lead to genetic differentiation among populations is a fundamental goal of evolutionary and conservation biology. This study focuses on Galaxias maculatus, a widely distributed fish exhibiting diadromous and freshwater resident forms. We examine the genetic differentiation among resident populations from the Manso River System, a trans-Andean system which thus went through drainage reversal following the Last Glacial Maximum (LGM), and resident and diadromous populations from the connected Puelo River that drains into the Pacific Ocean. Single nucleotide polymorphic (SNP) markers revealed that resident populations from the Manso River System are genetically distinguishable from the diadromous and resident populations from the Puelo River. This suggests that G. maculatus from the Manso River System likely colonized the area from a glacial refugium east of the Andes and did not expand downstream during drainage reversal, whereas the populations from the Puelo River colonized the area from glacial refugia west of the Andes. The populations from the Manso River exhibited lower genetic diversity than the Puelo River populations. Galaxias maculatus resident populations in Patagonia are decreasing due to anthropogenic factors. The Manso River System resident populations are susceptible to these factors and may show further decreases in genetic diversity.

Significance The controversy over the taxonomic identity of the eggs exploited by Australia’s first people around 50,000 y ago is resolved. The birds that laid these eggs are extinct, and distinguishing between two main candidates, a giant flightless “mihirung” Genyornis and a large megapode Progura , had proven impossible using morphological and geochemical methods. Ancient DNA sequencing remains inconclusive because of the age and burial temperature of the eggshell. In contrast, ancient protein sequences recovered from the eggshell enabled estimation of the evolutionary affinity between the egg and a range of extant taxa. The eggs are those of a Galloanseres (a group that includes extinct Dromornithidae, as well as extant landfowl and waterfowl), Genyornis , and not of the megapode (Megapodiidae, crown Galliformes). , The realization that ancient biomolecules are preserved in “fossil” samples has revolutionized archaeological science. Protein sequences survive longer than DNA, but their phylogenetic resolution is inferior; therefore, careful assessment of the research questions is required. Here, we show the potential of ancient proteins preserved in Pleistocene eggshell in addressing a longstanding controversy in human and animal evolution: the identity of the extinct bird that laid large eggs which were exploited by Australia’s indigenous people. The eggs had been originally attributed to the iconic extinct flightless bird Genyornis newtoni (†Dromornithidae, Galloanseres) and were subsequently dated to before 50 ± 5 ka by Miller et al. [ Nat. Commun. 7, 10496 (2016)]. This was taken to represent the likely extinction date for this endemic megafaunal species and thus implied a role of humans in its demise. A contrasting hypothesis, according to which the eggs were laid by a large mound-builder megapode (Megapodiidae, Galliformes), would therefore acquit humans of their responsibility in the extinction of Genyornis . Ancient protein sequences were reconstructed and used to assess the evolutionary proximity of the undetermined eggshell to extant birds, rejecting the megapode hypothesis. Authentic ancient DNA could not be confirmed from these highly degraded samples, but morphometric data also support the attribution of the eggshell to Genyornis . When used in triangulation to address well-defined hypotheses, paleoproteomics is a powerful tool for reconstructing the evolutionary history in ancient samples. In addition to the clarification of phylogenetic placement, these data provide a more nuanced understanding of the modes of interactions between humans and their environment.

Odontobutis potamophilus is a popular food fish in China, distributed mainly in the middle and lower reaches of the Yangtze River, where it is a famous delicacy and a newly focused species for aquaculture. The wild populations of O. potamophilus are facing the problem of overfishing and habitat degradation. Therefore, it is very necessary to investigate and protect the wild populations of O. potamophilus . In this study, 72 fish were sampled from 18 different sites over its distribution range. Nuclear sequence data of 4,267 loci were collected using a gene-capture method. Phylogenetic reconstruction revealed that there were three major clades: Oujiang clade (OJ), Qiantang and lower Yangtze clade (QY), and middle Yangtze clade (MY). The discriminant analysis of principal components (DAPC) and a STRUCTURE analysis confirmed that there are three major groups within O. potamophilus . A fastsimcoal2 analysis corroborated the population history and suggested that there was discernible gene flow among these three groups, especially between QY and MY. Estimated pairwise F ST suggested that Linhai (LH) and Shexian (SX) populations were the most divergent pair ( F ST = 0.7077). Taking the nucleotide diversity, population divergence, and admixture status altogether into consideration, we recommend that the LH, Gaoyou (GY) and Chaohu (CH) populations could be protected as the preferred resource for breeding projects. According to the results of genetic analyses, all populations of O. potamophilus should be protected due to low genetic diversity.

Herpes simplex virus (HSV) causes chronic infection in the human host, characterized by self-limited episodes of mucosal shedding and lesional disease, with latent infection of neuronal ganglia. The epidemiology of genital herpes has undergone a significant transformation over the past two decades, with the emergence of HSV-1 as a leading cause of first-episode genital herpes in many countries. Though dsDNA viruses are not expected to mutate quickly, it is not yet known to what degree the HSV-1 viral population in a natural host adapts over time, or how often viral population variants are transmitted between hosts. This study provides a comparative genomics analysis for 33 temporally-sampled oral and genital HSV-1 genomes derived from five adult sexual transmission pairs. We found that transmission pairs harbored consensus-level viral genomes with near-complete conservation of nucleotide identity. Examination of within-host minor variants in the viral population revealed both shared and unique patterns of genetic diversity between partners, and between anatomical niches. Additionally, genetic drift was detected from spatiotemporally separated samples in as little as three days. These data expand our prior understanding of the complex interaction between HSV-1 genomics and population dynamics after transmission to new infected persons.

Abstract Oenothera sect. Calylophus is a North American group of 13 recognized taxa in the evening primrose family (Onagraceae) with an evolutionary history that may include independent origins of bee pollination, edaphic endemism, and permanent translocation heterozygosity. Like other groups that radiated relatively recently and rapidly, taxon boundaries within Oenothera sect. Calylophus have remained challenging to circumscribe. In this study, we used target enrichment, flanking noncoding regions, gene tree/species tree methods, tests for gene flow modified for target-enrichment data, and morphometric analysis to reconstruct phylogenetic hypotheses, evaluate current taxon circumscriptions, and examine character evolution in Oenothera sect. Calylophus. Because sect. Calylophus comprises a clade with a relatively restricted geographic range, we were able to extensively sample across the range of geographic, edaphic, and morphological diversity in the group. We found that the combination of exons and flanking noncoding regions led to improved support for species relationships. We reconstructed potential hybrid origins of some accessions and note that if processes such as hybridization are not taken into account, the number of inferred evolutionary transitions may be artificially inflated. We recovered strong evidence for multiple evolutionary origins of bee pollination from ancestral hawkmoth pollination, edaphic specialization on gypsum, and permanent translocation heterozygosity. This study applies newly emerging techniques alongside dense infraspecific sampling and morphological analyses to effectively reconstruct the recalcitrant history of a rapid radiation. [Gypsum endemism; Oenothera sect. Calylophus; Onagraceae; phylogenomics; pollinator shift; recent radiation; target enrichment.]

Premise Accurate species delimitation is essential for evolutionary biology, conservation, and biodiversity management. We studied species delimitation in North American pinyon pines, Pinus subsection Cembroides, a natural group with high levels of incomplete lineage sorting. Methods We used coalescent-based methods and multivariate analyses of low-copy number nuclear genes and nearly complete high-copy number plastomes generated with the Hyb-Seq method. The three coalescent-based species delimitation methods evaluated were the Generalized Mixed Yule Coalescent (GMYC), Poisson Tree Process (PTP), and Trinomial Distribution of Triplets (Tr2). We also measured admixture in populations with possible introgression. Results Our results show inconsistencies among GMYC, PTP, and Tr2. The single-locus based GMYC analysis of plastid DNA recovered a higher number of species (up to 24 entities, including singleton lineages and clusters) than PTP and the multi-locus coalescent approach. The PTP analysis identified 10 species whereas Tr2 recovered 13, which agreed closely with taxonomic treatments. Conclusions We found that PTP and GMYC identified species with low levels of ILS and high morphological divergence (P. maximartinezii, P. pinceana, and P. rzedowskii). However, GMYC method oversplit species by identification of more divergent samples as singletons. Moreover, both PTP and GMYC were incapable of identifying some species that are readily identified morphologically. We suggest that the divergence times between lineages within North American pinyon pines are so disparate that GMYC results are unreliable. Results of the Tr2 method coincided well with previous delimitations based on morphology, DNA, geography, and secondary chemistry.