The Scirtidae Fleming, 1821 has been identified as one of the earliest diverging groups of Polyphagan beetles and is particularly speciose in Australia. However, very little is known about the origin of the Australian scirtids and there is a need for a robust, well-supported phylogeny to guide the genus and species descriptions and understand the relationships among taxa. In this study we carried out a phylogenetic analysis of the Australian Scirtinae Fleming, 1821, using DNA sequence data from ultraconserved elements (UCEs) and included representative taxa from New Zealand, New Caledonia, South America, South Africa and Eurasia in the analysis. Bayesian analyses of a concatenated dataset from 79 taxa recovered four major Southern Hemisphere groupings and two Australian–Eurasian groupings. The Veronatus group mainly consisted of genera from New Zealand, with the three Australian representatives only distantly related to each other. Relaxed molecular clock analyses, using the estimated age of the crown node of the Polyphaga for calibration, support a Gondwanan history for four of the groups of Australian Scirtinae and a northern origin for two groups. Our results highlight the value of commercially available UCEs for resolving the phylogenetic history of ancient groups of Coleoptera.
Immunocompromised individuals are at risk of prolonged SARS-CoV-2 infection due to weaker immunity, co-morbidities, and lowered vaccine effectiveness, which may evolve highly mutated variants of SARS-CoV-2. Nonetheless, limited data are available on the immune responses elicited by SARS-CoV-2 infection, reinfections, and vaccinations with emerging variants in immunocompromised patients. We analyzed clinical samples that were opportunistically collected from eight immunocompromised individuals for mutations in SARS-CoV-2 genomes, neutralizing antibody (NAb) titers against different SARS-CoV-2 variants, and the identification of immunoreactive epitopes using a high-throughput coronavirus peptide array. The viral genome analysis revealed two SARS-CoV-2 variants (20A from a deceased patient and an Alpha variant from a recovered patient) with an eight amino-acid (aa) deletion within the N-terminal domain (NTD) of the surface glycoprotein. A higher NAb titer was present against the prototypic USA/WA1/2020 strain in vaccinated immunocompromised patients. NAb titer was absent against the Omicron variant and the cultured virus of the 20A variant with eight aa deletions in non-vaccinated patients. Our data suggest that fatal SARS-CoV-2 infections may occur in immunocompromised individuals even with high titers of NAb post-vaccination. Moreover, persistent SARS-CoV-2 infection may lead to the emergence of newer variants with additional mutations favoring the survival and fitness of the pathogen that include deletions in NAb binding sites in the SARS-CoV-2 surface glycoprotein.
The Baltic Sea, with its steep salinity gradient, high water retention time, and relatively young age, represents a marginal ecosystem between marine and freshwater extremes. Due to differing invasion history and dispersal capabilities of Baltic species, there are large differences in species distributions, species-specific genetic structure and variation, and edge populations that may represent both a subset of the original population, as well as unique genetic lineages. We used a phylogenomic approach to investigate relationships between populations of three benthic macroinvertebrate species: Pygospio elegans, Corophium volutator, and Mya arenaria, providing new insight into evolutionary dynamics among populations in the Baltic Sea and the adjacent North Sea. We found little relation among the populations of P. elegans and C. volutator, in contrast to M. arenaria, which exhibits a higher degree of resemblance between populations. We also found low relation within sites sampled at different times of the year for all species. Each species exhibited unique phylogenetic patterns, suggesting the North Sea populations of P. elegans and M. arenaria are closely related to populations within the Baltic Sea, and with only C. volutator showing trends resembling isolation by distance. These differences could be explained by both their different invasion histories and dispersal capabilities of the individual species.
The detection of rustrela virus (RusV)-associated encephalitis in two carnivoran mammal species further extends the knowledge on susceptible species. Furthermore, we provide clinical and pathological data for the two new RusV cases, which were until now limited to the initial description of this fatal encephalitis. , ABSTRACT Rustrela virus (RusV; species Rubivirus strelense ) is a recently discovered relative of rubella virus (RuV) that has been detected in cases of encephalitis in diverse mammals. Here, we diagnosed two additional cases of fatal RusV-associated meningoencephalitis in a South American coati ( Nasua nasua ) and a Eurasian or European otter ( Lutra lutra ) that were detected in a zoological garden with history of prior RusV infections. Both animals showed abnormal movement or unusual behavior and their brains tested positive for RusV using specific reverse transcription quantitative PCR (RT-qPCR) and RNA in situ hybridization. As previous sequencing of the RusV genome proved to be very challenging, we employed a sophisticated target-specific capture enrichment with specifically designed RNA baits to generate complete RusV genome sequences from both detected encephalitic animals and apparently healthy wild yellow-necked field mice ( Apodemus flavicollis ). Furthermore, the technique was used to revise three previously published RusV genomes from two encephalitic animals and a wild yellow-necked field mouse. When comparing the newly generated RusV sequences to the previously published RusV genomes, we identified a previously undetected stretch of 309 nucleotides predicted to represent the intergenic region and the sequence encoding the N terminus of the capsid protein. This indicated that the original RusV sequence was likely incomplete due to misassembly of the genome at a region with an exceptionally high G+C content of >80 mol%. The new sequence data indicate that RusV has an overall genome length of 9,631 nucleotides with the longest intergenic region (290 nucleotides) and capsid protein-encoding sequence (331 codons) within the genus Rubivirus . IMPORTANCE The detection of rustrela virus (RusV)-associated encephalitis in two carnivoran mammal species further extends the knowledge on susceptible species. Furthermore, we provide clinical and pathological data for the two new RusV cases, which were until now limited to the initial description of this fatal encephalitis. Using a sophisticated enrichment method prior to sequencing of the viral genome, we markedly improved the virus-to-background sequence ratio compared to that of standard procedures. Consequently, we were able to resolve and update the intergenic region and the coding region for the N terminus of the capsid protein of the initial RusV genome sequence. The updated putative capsid protein now resembles those of rubella and ruhugu virus in size and harbors a predicted RNA-binding domain that had not been identified in the initial RusV genome version. The newly determined complete RusV genomes strongly improve our knowledge of the genome structure of this novel rubivirus.
Purpose The demand for high-throughput genetic profiling of somatic mutations in cancer tissues is growing. We sought to establish a targeted next generation sequencing (NGS) panel test for clinical oncology practice. Methods Customized probes were designed to capture exonic regions of 141 genes selected for the panel, which was aimed for the detection of clinically actionable genetic variations in cancer, including KRAS, NRAS, BRAF, ALK, ROS1, KIT and EGFR. The size of entire targeted regions is 0.8 Mb. Library preparation used NEBNext Ultra II FS kit coupled with target enrichment. Paired-end sequencing was run on Illumina NextSeq 500 at a read length of 150 nt. A bioinformatics workflow focusing on single nucleotide variant and short insertions and deletions (SNV/indel) discovery was established using open source, in-house and commercial software tools. Standard reference DNA samples were used in testing the sensitivity and precision and limit of detection in variant calling. Results The general performance of the panel was observed in pilot runs. Average total reads per sample ranged from 30 million to 48 million, 73% ~82% unique reads. All runs had more than 99% average mapping rate. Mean target coverage ranged from 727x to 879x. Depth of coverage at 50x or more reached 87% of targeted region and 60% of targeted region received 500x or more coverage depth. Using OncoSpan HD827 DNA, which bears 144 variants (SNV/indel) from 80 genes that are within the targeted region on the panel, our somatic variant calling pipeline reached 97% sensitivity and 100% precision respectively, with near 48 million reads. High concordance with orthogonal approaches in variant detection was further verified with 7 cancer cell lines and 45 clinical specimens. Conclusion We developed a NGS panel with a focus on clinically actionable gene mutations and validated the performance in library construction, sequencing and variant calling. High concordance with reference materials and orthogonal mutation detection was observed.
Ann Arbor, MI 48103
(d/b/a Daicel Arbor Biosciences)
All Rights Reserved.