The temporal and spatial coarseness of megafaunal fossil records complicates attempts to to disentangle the relative impacts of climate change, ecosystem restructuring, and human activities associated with the Late Quaternary extinctions. Advances in the extraction and identification of ancient DNA that was shed into the environment and preserved for millennia in sediment now provides a way to augment discontinuous palaeontological assemblages. Here, we present a 30,000-year sedimentary ancient DNA (sedaDNA) record derived from loessal permafrost silts in the Klondike region of Yukon, Canada. We observe a substantial turnover in ecosystem composition between 13,500 and 10,000 calendar years ago with the rise of woody shrubs and the disappearance of the mammoth-steppe (steppe-tundra) ecosystem. We also identify a lingering signal of Equus sp. (North American horse) and Mammuthus primigenius (woolly mammoth) at multiple sites persisting thousands of years after their supposed extinction from the fossil record.

Cellular lysates capable of transcription and translation have become valuable tools for prototyping genetic circuits, screening engineered functional parts, and producing biological components. Here we report that lysates derived from Yersinia pestis CO92− are functional and can utilize both the E. coli σ70 and the bacteriophage T7 promoter systems to produce green fluorescent protein (GFP). Because of the natural lifestyle of Y. pestis, lysates were produced from cultures grown at 21 °C, 26 °C, and 37 °C to mimic the infection cycle. Regardless of the promoter system the GFP production from 37 °C was the most productive and the 26 °C lysate was the least. When reactions are initiated with 5 nM of DNA, the GFP output of the 37 °C lysate is comparable with the productivity of other non-E. coli systems. The data we present demonstrate that, without genetic modification to enhance productivity, cell-free extracts from Y. pestis are functional and dependent on the temperature at which the bacterium was grown.

Abstract Background Structural variants (SVs) significantly drive genome diversity and environmental adaptation for diverse species. Unlike the prevalent small SVs (< kilobase-scale) in higher eukaryotes, large-size SVs rarely exist in the genome, but they function as one of the key evolutionary forces for speciation and adaptation. Results In this study, we discover and characterize several megabase-scale presence-absence variations (PAVs) in the maize genome. Surprisingly, we identify a 3.2 Mb PAV fragment that shows high integrity and is present as complete presence or absence in the natural diversity panel. This PAV is embedded within the nucleolus organizer region (NOR), where the suppressed recombination is found to maintain the PAV against the evolutionary variation. Interestingly, by analyzing the sequence of this PAV, we not only reveal the domestication trace from teosinte to modern maize, but also the footprints of its origin from Tripsacum , shedding light on a previously unknown contribution from Tripsacum to the speciation of Zea species. The functional consequence of the Tripsacum segment migration is also investigated, and environmental fitness conferred by the PAV may explain the whole segment as a selection target during maize domestication and improvement. Conclusions These findings provide a novel perspective that Tripsacum contributes to Zea speciation, and also instantiate a strategy for evolutionary and functional analysis of the “fossil” structure variations during genome evolution and speciation.

Abstract Background Chromosomal variants play important roles in crop breeding and genetic research. The development of single-stranded oligonucleotide (oligo) probes simplifies the process of fluorescence in situ hybridization (FISH) and facilitates chromosomal identification in many species. Genome sequencing provides rich resources for the development of oligo probes. However, little progress has been made in peanut due to the lack of efficient chromosomal markers. Until now, the identification of chromosomal variants in peanut has remained a challenge. Results A total of 114 new oligo probes were developed based on the genome-wide tandem repeats (TRs) identified from the reference sequences of the peanut variety Tifrunner (AABB, 2 n = 4x = 40) and the diploid species Arachis ipaensis (BB, 2 n = 2x = 20). These oligo probes were classified into 28 types based on their positions and overlapping signals in chromosomes. For each type, a representative oligo was selected and modified with green fluorescein 6-carboxyfluorescein (FAM) or red fluorescein 6-carboxytetramethylrhodamine (TAMRA). Two cocktails, Multiplex #3 and Multiplex #4, were developed by pooling the fluorophore conjugated probes. Multiplex #3 included FAM-modified oligo TIF-439, oligo TIF-185-1, oligo TIF-134-3 and oligo TIF-165. Multiplex #4 included TAMRA-modified oligo Ipa-1162, oligo Ipa-1137, oligo DP-1 and oligo DP-5. Each cocktail enabled the establishment of a genome map-based karyotype after sequential FISH/genomic in situ hybridization (GISH) and in silico mapping. Furthermore, we identified 14 chromosomal variants of the peanut induced by radiation exposure. A total of 28 representative probes were further chromosomally mapped onto the new karyotype. Among the probes, eight were mapped in the secondary constrictions, intercalary and terminal regions; four were B genome-specific; one was chromosome-specific; and the remaining 15 were extensively mapped in the pericentric regions of the chromosomes. Conclusions The development of new oligo probes provides an effective set of tools which can be used to distinguish the various chromosomes of the peanut. Physical mapping by FISH reveals the genomic organization of repetitive oligos in peanut chromosomes. A genome map-based karyotype was established and used for the identification of chromosome variations in peanut following comparisons with their reference sequence positions.

After nearly a decade of field inventories in which we preserved voucher specimens of the small terrestrial mammals of Sulawesi, we combined qualitative and quantitative analyses of morphological traits with molecular phylogenetics to better understand the diversity of shrews (Soricidae: Crocidura) on the island. We examined the morphology of 1368 specimens and obtained extensive molecular data from many of them, including mitochondrial DNA sequences from 851 specimens, up to five nuclear exons from 657 specimens, and thousands of ultraconserved elements from 90 specimens. By iteratively testing species limits using distinct character datasets and appropriate taxon sampling, we found clear, mostly consistent evidence for the existence of 21 species of shrews on Sulawesi, only seven of which were previously recognized. We divide these 21 species into five morphogroups, provide emended diagnoses of the seven previously named species, and describe 14 new species. The Long-Tailed Group contains Crocidura caudipilosa, C. elongata, C. microelongata, new species, and C. quasielongata, new species; the Rhoditis Group contains C. rhoditis, C. pseudorhoditis, new species, C. australis, new species, and C. pallida, new species; the Small-Bodied Group contains C. lea, C. levicula, C. baletei, new species, C. mediocris, new species, C. parva, new species, and C. tenebrosa, new species; the Thick-Tailed Group contains C. brevicauda, new species and C. caudicrassa, new species; and the Ordinary Group contains C. musseri, C. nigripes, C. normalis, new species, C. ordinaria, new species, and C. solita, new species. Documenting these endemic species reveals a local radiation (20 of the 21 species are members of an endemic clade) in which elevational gradients played a prominent role in either promoting speciation, or at a minimum, fostering the cooccurrence of phenotypically similar species. As now understood, the species-level diversity of Crocidura on Sulawesi is nearly three times the known diversity of any other insular shrew fauna. This study highlights the fact that if we wish to understand the true extent of biodiversity on Earth, large-scale, vouchered organismal inventories followed up with thorough examinations of genetic, morphological, and geographic traits are sorely needed in montane tropical regions, even for purportedly well-studied groups such as mammals.

Pre-existing comorbidities such as obesity or metabolic diseases can adversely affect the clinical outcome of COVID-19. Chronic metabolic disorders are globally on the rise and often a consequence of an unhealthy diet, referred to as a Western Diet. For the first time in the Syrian hamster model, we demonstrate the detrimental impact of a continuous high-fat high-sugar diet on COVID-19 outcome. We observed increased weight loss and lung pathology, such as exudate, vasculitis, hemorrhage, fibrin, and edema, delayed viral clearance and functional lung recovery, and prolonged viral shedding. This was accompanied by an altered, but not significantly different, systemic IL-10 and IL-6 profile, as well as a dysregulated serum lipid response dominated by polyunsaturated fatty acid-containing phosphatidylethanolamine, partially recapitulating cytokine and lipid responses associated with severe human COVID-19. Our data support the hamster model for testing restrictive or targeted diets and immunomodulatory therapies to mediate the adverse effects of metabolic disease on COVID-19.

The remains of the extinct Merck’s rhinoceros (Stephanorhinus kirchbergensis (Jäger 1839)), well studied in Western Europe, are rare in Russia. However, thanks to the work of a number of researchers, the geography of the finds and the reconstructed range of the species have been significantly expanded. The time of the optimal existence of Merck’s rhinoceros in Yakutia is now recognized as the Middle Pleistocene; the latest finds, dating from the beginning of the late Pleistocene, are known from the southeast of Western Siberia. We provide new radiocarbon dates for the root of a tooth and bone tissue from a previously unstudied lower jaw of the Merck’s rhinoceros from Altai (AltR), whose taxonomic identity we confirm using genomic analysis. Both dates provide an age estimate of around 40 thousand years, which corresponds to the Karginsky time (MIS 3), and are the youngest for the species on the territory of Russia. The pollen spectrum from the soil filling the bone canal characterizes plant communities of open landscapes with forest areas on the upland or in the floodplain, and reflects either local features of the environment or communities of the cold stage within the Karginsky interstadial. A second Merck’s rhinoceros from the Chondon River (ChR), in extreme northeast Yakutia, was determined by previous researchers to have lived either 45–70 thousand years ago or during the beginning of the Middle Pleistocene. Considering what habitats were available in the region, we propose that the ChR could have lived during the last—Kazantsevo—interglacial (MIS 5e) or later. Both finds, AltR and ChR, extend the temporal range of the species existence.

In June 2021, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases surged in Liberia. SARS-CoV-2 sequences from patients hospitalized during March–July 2021 revealed the Delta variant was in Liberia in early March and was dominant in June, irrespective of geography. Mutations and deletions suggest multiple SARS-CoV-2 Delta variant introductions.