Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5,6,7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.
An excavation conducted at Harewood Cemetery to identify the unmarked grave of Samuel Washington resulted in the discovery of burials presumably belonging to George Washington’s paternal grandnephews and their mother, Lucy Payne. To confirm their identities this study examined Y-chromosomal, mitochondrial, and autosomal DNA from the burials and a living Washington descendant. The burial’s Y-STR profile was compared to FamilyTreeDNA’s database, which resulted in a one-step difference from the living descendant and an exact match to another Washington. A more complete Y-STR and Y-SNP profile from the descendant was inferred to be the Washington Y profile. Kinship comparisons performed in relation to the descendant, who is a 4th and 5th degree relative of the putative individuals, resulted in >37,000 overlapping autosomal SNPs and strong statistical support with likelihood ratios exceeding one billion. This study highlights the benefits of a multi-marker approach for kinship prediction and DNA-assisted identification of historical remains.
Parchment, the skins of animals prepared for use as writing surfaces, offers a valuable source of genetic information. Many have clearly defined provenance, allowing for the genetic findings to be evaluated in temporal and spatial context. While these documents can yield evidence of the animal sources, the DNA contained within these aged skins is often damaged and fragmented. Previously, genetic studies targeting parchment have used destructive sampling techniques and so the development and validation of non-destructive sampling methods would expand opportunities and facilitate testing of more precious documents, especially those with historical significance. Here we present genetic data obtained by non-destructive sampling of eight parchments spanning the 15th century to the modern day. We define a workflow for enriching the mitochondrial genome (mtGenome), generating next-generation sequencing reads to permit species identification, and providing interpretation guidance. Using sample replication, comparisons to destructively sampled controls, and by establishing authentication criteria, we were able to confidently assign full/near full mtGenome sequences to 56.3% of non-destructively sampled parchments, each with greater than 90% of the mtGenome reference covered. Six of eight parchments passed all four established thresholds with at least one non-destructive sample, highlighting promise for future studies.
The study examines the challenges of genetic analysis in highly incinerated or degraded human skeletal remains, which is critical for identifying victims of mass disasters. Previous research on the effects of thermal degradation on whole-genome single-nucleotide polymorphism (SNP) quality has been limited. This research utilized two DNA extraction techniques to analyze samples from the bones and teeth of 27 fire victims and employed a novel method of enriching for whole-genome SNPs. The sequencing was performed on an Illumina NextSeq 550 platform.
Analysis revealed that the preservation and variability of SNPs were largely influenced by the type of skeletal element and the burn category rather than the extraction technique used. Specifically, long bones, hand and foot bones, and teeth subjected to temperatures below 350°C yielded higher genomic DNA. Conversely, samples exposed to temperatures above 350°C demonstrated a significant decrease in the number of captured SNPs. The findings support the use of a modified Dabney extraction technique for better DNA yield when traditional methods fall short in forensic applications, highlighting the importance of sample selection for maximizing genetic data recovery.
Disease resistance genes in livestock provide health benefits to animals and opportunities for farmers to meet the growing demand for affordable, high-quality protein. Previously, researchers used gene editing to modify the porcine CD163 gene and demonstrated resistance to a harmful virus that causes porcine reproductive and respiratory syndrome (PRRS). To maximize potential benefits, this disease resistance trait needs to be present in commercially relevant breeding populations for multiplication and distribution of pigs. Toward this goal, a first of-its-kind, scaled gene editing program was established to introduce a single modified CD163 allele into four genetically diverse, elite porcine lines. This effort produced healthy pigs that resisted PRRS virus infection as determined by macrophage and animal challenges. This founder population will be used for additional disease and trait testing, multiplication, and commercial distribution upon regulatory approval. Applying CRISPR-Cas to eliminate a viral disease represents a major step toward improving animal health.
Directly observing the chronology and tempo of adaptation in response to ecological change is rarely possible in natural ecosystems. Sedimentary ancient DNA (sedaDNA) has been shown to be a tractable source of genome-scale data of long-dead organisms1,2,3 and to thereby potentially provide an understanding of the evolutionary histories of past populations.4,5 To date, time series of ecosystem biodiversity have been reconstructed from sedaDNA, typically using DNA metabarcoding or shotgun sequence data generated from less than 1 g of sediment.6,7 Here, we maximize sequence coverage by extracting DNA from ∼50× more sediment per sample than the majority of previous studies1,2,3 to achieve genotype resolution. From a time series of Late Pleistocene sediments spanning from a marine to freshwater ecosystem, we compare adaptive genotypes reconstructed from the environmental genomes of three-spined stickleback at key time points of this transition. We find a staggered temporal dynamic in which freshwater alleles at known loci of large effect in marine-freshwater divergence of three-spined stickleback (e.g., EDA)8 were already established during the brackish phase of the formation of the isolation basin. However, marine alleles were still detected across the majority of marine-freshwater divergence-associated loci, even after the complete isolation of the lake from marine ingression. Our retrospective approach to studying adaptation from environmental genomes of three-spined sticklebacks at the end of the last glacial period complements contemporary experimental approaches9,10,11 and highlights the untapped potential for retrospective “evolve and resequence” natural experiments using sedaDNA.
Holocentric karyotypes are assumed to rapidly evolve through chromosome fusions and fissions due to the diffuse nature of their centromeres. Here, we took advantage of the recent availability of a chromosome-scale reference genome for Rhynchospora breviuscula, a model species of this holocentric genus, and developed the first set of oligo-based barcode probes for a holocentric plant. These probes were applied to 13 additional species of the genus, aiming to investigate the evolutionary dynamics driving the karyotype evolution in Rhynchospora. The two sets of probes were composed of 27,392 (green) and 23,968 (magenta) oligonucleotides (45-nt long), and generated 15 distinct FISH signals as a unique barcode pattern for the identification of all five chromosome pairs of the R. breviuscula karyotype. Oligo-FISH comparative analyzes revealed different types of rearrangements, such as fusions, fissions, putative inversions and translocations, as well as genomic duplications among the analyzed species. Two rounds of whole genome duplication (WGD) were demonstrated in R. pubera, but both analyzed accessions differed in the complex chain of events that gave rise to its large, structurally diploidized karyotypes with 2n = 10 or 12. Considering the phylogenetic relationships and divergence time of the species, the specificity and synteny of the probes were maintained up to species with a divergence time of ~25 My. However, karyotype divergence in more distant species hindered chromosome mapping and the inference of specific events. This barcoding system is a powerful tool to study chromosomal variations and genomic evolution in holocentric chromosomes of Rhynchospora species.
Investigative genetic genealogy (IGG) has emerged as a highly effective tool for tying a forensic DNA sample to an identity. While much of the attention paid to IGG has focused on cases where the DNA is from an unknown suspect, IGG has also been used to help close hundreds of unidentified human remains (UHR) cases. Genome-wide single-nucleotide polymorphism (SNP) genotype data can be obtained from forensic samples using microarray genotyping or whole-genome sequencing (WGS) with protocols optimized for degraded DNA. After bioinformatic processing, the SNP data can be uploaded to public GG databases that allow law enforcement usage, where it can be compared with other users’ data to find distant relatives. A genetic genealogist can then build the family trees of the relatives to narrow down the identity of the source of the forensic DNA sample. To date, 36 UHR identifications using IGG have been publicly announced. The same IGG techniques developed and refined for UHR cases have significant potential for disaster victim identification, where DNA is often extremely compromised, and close family references may not be available. This paper reviews the laboratory, bioinformatic, and genealogical techniques used in IGG for UHR cases and presents three case studies that demonstrate how IGG is assisting with remains identification.
The origins of treponemal diseases have long remained unknown, especially considering the sudden onset of the first syphilis epidemic in the late 15th century in Europe and its hypothesized arrival from the Americas with Columbus’ expeditions1,2. Recently, ancient DNA evidence has revealed various treponemal infections circulating in early modern Europe and colonial-era Mexico3,4,5,6. However, there has been to our knowledge no genomic evidence of treponematosis recovered from either the Americas or the Old World that can be reliably dated to the time before the first trans-Atlantic contacts. Here, we present treponemal genomes from nearly 2,000-year-old human remains from Brazil. We reconstruct four ancient genomes of a prehistoric treponemal pathogen, most closely related to the bejel-causing agent Treponema pallidum endemicum. Contradicting the modern day geographical niche of bejel in the arid regions of the world, the results call into question the previous palaeopathological characterization of treponeme subspecies and showcase their adaptive potential. A high-coverage genome is used to improve molecular clock date estimations, placing the divergence of modern T. pallidum subspecies firmly in pre-Columbian times. Overall, our study demonstrates the opportunities within archaeogenetics to uncover key events in pathogen evolution and emergence, paving the way to new hypotheses on the origin and spread of treponematoses.
Over the past several decades, most people have come to understand what DNA is – generally, it’s defined as the carrier of a person’s distinct genetic information. Since DNA was first used in forensic science in the late 1980s, it has opened doors for criminal investigators and genealogists to solve cases that have been cold for decades. For the U.S. military, it’s been essential in carrying out the age-old motto, “no one left behind.”
Daicel Arbor Biosciences
5840 Interface Dr. Suite 101,
Ann Arbor, MI 48103
1.734.998.0751Ann Arbor, MI 48103
©2025 Biodiscovery LLC
(d/b/a Daicel Arbor Biosciences)
All Rights Reserved.
(d/b/a Daicel Arbor Biosciences)
All Rights Reserved.