Within tribe Gnaphalieae (Asteraceae), the Australasian clade is one of the four major clades. In Australia, the Gnaphalieae account for 488 species or approximately half of the native Asteraceae, encompassing wide ecological and morphological diversity including shrubs, everlasting paper daisies, cudweeds, alpine cushion plants, and ephemeral herbs in the arid zone. The evolution of the Australasian clade is still poorly understood. The most detailed previous infratribal classification of Gnaphalieae has recently been revised, resulting in the recognition of two subtribes, with all Australian species placed in subtribe Gnaphaliinae. The most comprehensive previous phylogeny of Australian Gnaphalieae used high-copy ribosomal and chloroplast markers but showed limited resolution and branch support. We used conserved ortholog set data produced with sequence capture and 53 chloroplast genes to infer nuclear and chloroplast likelihood phylogenies for Australian Gnaphalieae, generating data for at least one species each from 80 of the 86 native genera. Four major clades were resolved: the Euchiton clade of cudweed-like and alpine perennial species; the shrubby Cassinia clade; the predominantly perennial and eastern Australian Waitzia clade; and the predominantly ephemeral and western Australian to Eremaean Angianthus clade. The Cassinia, Waitzia, and Angianthus clades are largely congruent with “groups” in a previous morphological analysis and classification of Gnaphalieae. Analysis of ancestral ranges implied the temperate Southeast of Australia as the most likely area of origin for the Australian Gnaphalieae as a whole and for three of the four major clades. The Angianthus clade was implied to be ancestrally Eremaean, with a major secondary radiation originating in southwestern Australia. Our broadly sampled phylogeny provides a framework to inform sampling and design of future studies to test the circumscription of genera.

Atta Fabricius is an ecologically dominant leaf-cutting ant genus, the major herbivore of the Neotropics, and an agricultural pest of great economic importance. Phylogenetic relationships within Atta have until now remained uncertain, and the delimitation and identification of a subset of Atta species are problematic. To address these phylogenetic uncertainties, we reconstruct the most comprehensive phylogenetic estimate to date of Atta by employing ultraconserved elements (UCEs). We recovered 2340 UCE loci from 224 Atta specimens, which include 14 out of the 15 identifiable species from across their geographic distributions, and 49 outgroup specimens. Our results strongly support the monophyly of Atta and of the four clades that coincide with the previously recognized subgenera Archeatta Gonçalves, Atta s.s. Emery, Epiatta Borgmeier, and Neoatta Gonçalves. The Archeatta clade contains three species occurring in North and Central America and the Caribbean and is the sister group of the remainder of all other Atta species. The Atta s.s. clade is composed of two species occupying North, Central, and South America. The Epiatta clade contains seven entirely South American species and the two species of the Neoatta clade occur in Central and South America. Divergence-dating analyses identify a series of major events in the Miocene, such as the divergence of Acromyrmex Mayr and Atta 16.7 million years ago (Ma) and the crown-group origin of Atta around 8.5 Ma. Extant Atta species evolved very recently, originating in the early Pleistocene, approximately 1.8–0.3 Ma (crown-group ages). We provide the first evidence that Atta goiana Gonçalves belongs to the Epiatta clade and that Atta robusta Borgmeier is the species with the youngest crown-group age of 0.3 Ma. The very young ages of Atta and its component species indicate a recent, rapid radiation. Biogeographic analyses suggest that the range of the most recent common ancestor of Atta consisted of the combined North/Central America and NW South America bioregions and that one daughter lineage subsequently dispersed into South America, rapidly diversifying in the newly formed Cerrado biome and Chaco, and further dispersing into the Atlantic Forest, Caatinga, and Pampas bioregions.

Premise Cunoniaceae are a family of shrubs and trees with 27 genera and ca. 335 species, mostly confined to tropical and wet temperate zones of the southern hemisphere. There are several known issues regarding generic limits, and the family also displays a number of intriguing long-range disjunctions. Methods We performed a phylogenomic study using the universal Angiosperms353 probe set for targeted sequence capture. We sampled 37 species covering all genera in the Cunoniaceae, and those in the three closely related families of the crown Oxalidales (Brunelliaceae, Cephalotaceae, and Elaeocarpaceae). We also performed analyses for molecular dating and ancestral area reconstruction. Results We recovered the topology (Cunoniaceae, (Cephalotaceae, (Brunelliaceae, Elaeocarpaceae))) and a well-resolved genus-level phylogeny of Cunoniaceae with strongly supported clades corresponding to all previously recognized tribes. As previously suspected, the genera Ackama and Weinmannia were recovered as paraphyletic. Australasia was inferred as the likely ancestral area for the family. Conclusions The current distribution of Cunoniaceae is best explained by long-distance dispersal with a few possible cases of Australasian–American vicariance events. Extinctions may have been important in determining the mostly Oceanian distribution of this family while some genera in the tribe Cunonieae and in New Caledonia have undergone recent bursts of diversification. New generic diagnoses, 80 new combinations, and one new name are provided for a recircumscribed Ackama (including Spiraeopsis), a much smaller Weinmannia (mostly New World), and a resurrected Pterophylla to accommodate Old World taxa previously in Weinmannia.

The evolutionary history of Ichneumoninae, the largest subfamily of ichneumonid wasps, is investigated using genomic ultraconserved elements (UCEs). The dataset includes 147 species in 130 genera of Ichneumoninae and 155 outgroup taxa from 19 subfamilies. Matrices with varying degrees of completeness were analysed with different partition schemes and the resulting topologies were found to be mostly congruent. All analyses recovered Ichneumoninae as a monophyletic group, sister to all other Ichneumoniformes except Agriotypinae. Almost no support was found for previous tribal classification schemes, except that the tribes Phaeogenini and Platylabini are largely monophyletic. A new tribal classification is proposed based on the relationships recovered, consisting of seven tribes: Alomyini Förster, Phaeogenini Förster, Notosemini Townes, Eurylabini Heinrich, Platylabini Berthoumieu, Ichneumonini Latreille and a new monogeneric tribe, Abzariini Santos & Wahl. As documented in other lineages of Ichneumonidae, pervasive morphological convergence poses a challenge to the establishment of higher-level groups that are both monophyletic and diagnosable. Extremely short branches at the base of the Ichneumoninae clade suggest that the group may have undergone a rapid radiation when it first diverged, potentially associated with its specialization on lepidopteran hosts. Multiple changes in the morphology of the female abdomen suggest that morphological convergence is associated with multiple transitions in the use of pupal versus larval hosts across the subfamily. The results demonstrate the power of phylogenomic approaches to resolve evolutionary relationships in hyper-diverse and poorly studied insect groups and to provide a framework for testing evolutionary hypotheses.

Neotropical catfishes of the family Pseudopimelodidae comprise 53 species allocated to seven genera widely distributed in South America from northwestern Colombia and Venezuela to Argentina and Uruguay. Intergeneric relationships based on morphology-based phylogenies are conflicting, and the interspecific relationships remain incipient. We conducted the first molecular phylogeny of the family by analyzing sequence data from ultraconserved elements (UCEs) of the genome for 33 specimens of Pseudopimelodidae and 19 related taxa. Phylogenetic relationships were accessed by concatenated matrices using Bayesian inference and, maximum likelihood, and the coalescent approach by a species tree analysis. The phylogeny with 868 UCE loci and 906,689 bp strongly support the monophyly of Pseudopimelodidae, and the arrangement of two major subclades herein classified as subfamilies Pseudopimelodinae and the newly proposed Batrochoglaninae. Pseudopimelodinae is composed by Cruciglanis sister to Pseudopimelodus and Rhyacoglanis, whereas the new subfamily Batrochoglaninae is composed by Cephalosilurus and Lophiosilurus as sister to Batrochoglanis and Microglanis. Pseudopimelodinae is supported by five morphological synapomorphies and Batrochoglaninae supported by three such synapomorphies. The results of this study will surely guide future research aiming to delimit and describe species within the monophyletic groups.

Understanding patterns of gene flow and population structure is vital for managing threatened and endangered species. The reticulated flatwoods salamander (Ambystoma bishopi) is an endangered species with a fragmented range, therefore assessing connectivity and genetic population structure can inform future conservation. Samples collected from breeding sites (n = 5) were used to calculate structure and gene flow using three marker types: single nucleotide polymorphisms isolated from potential immune genes (SNPs), nuclear data from the major histocompatibility complex (MHC), and the mitochondrial control region. At a broad geographical scale, nuclear data (SNP and MHC) supported gene flow and little structure (FST = 0.00 – 0.09) while mitochondrial structure was high (ΦST = 0.15 – 0.36) and gene flow was low. Mitochondrial markers also exhibited isolation by distance (IBD) between sites (p = 0.01) and within one site (p = 0.04) while nuclear markers did not show IBD between or within sites (p = 0.17 and p = 0.66). Due to the discordant results between nuclear and mitochondrial markers, our results suggest male biased dispersal. Overall, salamander populations showed little genetic differentiation and structure with some gene flow, at least historically, among sampling sites. Given historic gene flow and a lack of population structure, carefully considered reintroductions could begin to expand the limited range of this salamander to ensure its long-term resilience.

The diverse superfamily Oestroidea with more than 15 000 known species includes among others blow flies, flesh flies, bot flies and the diverse tachinid flies. Oestroidea exhibit strikingly divergent morphological and ecological traits, but even with a variety of data sources and inferences there is no consensus on the relationships among major Oestroidea lineages. Phylogenomic inferences derived from targeted enrichment of ultraconserved elements or UCEs have emerged as a promising method for resolving difficult phylogenetic problems at varying timescales. To reconstruct phylogenetic relationships among families of Oestroidea, we obtained UCE loci exclusively derived from the transcribed portion of the genome, making them suitable for larger and more integrative phylogenomic studies using other genomic and transcriptomic resources. We analysed datasets containing 37–2077 UCE loci from 98 representatives of all oestroid families (except Ulurumyiidae and Mystacinobiidae) and seven calyptrate outgroups, with a total concatenated aligned length between 10 and 550 Mb. About 35% of the sampled taxa consisted of museum specimens (2–92 years old), of which 85% resulted in successful UCE enrichment. Our maximum likelihood and coalescent-based analyses produced well-resolved and highly supported topologies. With the exception of Calliphoridae and Oestridae all included families were recovered as monophyletic with the following conclusions: Oestroidea is monophyletic with Mesembrinellidae as sister to the remaining oestroid families; Oestridae is paraphyletic with respect to Sarcophagidae; Polleniidae is sister to Tachinidae; Rhinophoridae sister to (Luciliinae (Toxotarsinae (Melanomyinae + Calliphorinae))); Phumosiinae is sister to Chrysomyinae and Bengaliinae is sister to Rhiniidae. These results support the ranking of most calliphorid subfamilies as separate families.

Aim Neotropical savanna birds occur north and south of, but mostly not in the Amazon Basin, except for a few isolated savanna patches. Here, we investigate the phylogeography of 23 taxa of Neotropical savanna birds co-distributed across multiple isolated savanna patches to assess to what extent these species have a shared history of spatial diversification. We explore the role of the forested Amazon Basin as a vicariant barrier separating northern and southern populations, particularly focusing on the role of the coastal savannas of Amapá as a potential corridor of gene flow between northern and southern populations. Location Neotropical savannas. Taxon Aves. Method We employ 775 mtDNA samples of 24 co-distributed savanna bird taxa from all major savanna patches in South America to infer phylogeographic patterns. For this purpose, we use 24 genomic samples (UCEs) of a subset of 12 taxa in addition to the mtDNA samples to estimate timing of divergence across the Amazon Basin. We use phylogeographic concordance factors (PCF) to assess the level of phylogeographic congruence across co-distributed taxa. Finally, we assess to which level physical distance drives genetic structuring by estimating isolation-by-distance (IBD) effects. Results We find that although the study taxa generally do not share similar diversification patterns geographically, many have at least two distinct genetic groups, one north and one south of the Amazon Basin, that have only recently diverged. The timing of divergence between both areas is generally centered in the late Pleistocene, but somewhat variable, indicating there is no single vicariant event responsible for driving diversification. Main conclusions Variability in divergence times indicates that landscape processes have not led to shared phylogeographic responses, which indicates a relatively minor role for vicariance. Shallow divergences suggest that Neotropical grassland habitats may have recently been more connected or that gene flow has played an important role. We did not find evidence of a single dominant corridor of dispersal between savannas north and south of the forested Amazon Basin.

Premise Phylogenetic relationships within major angiosperm clades are increasingly well resolved, but largely informed by plastid data. Areas of poor resolution persist within the Dipsacales, including placement of Heptacodium and Zabelia, and relationships within the Caprifolieae and Linnaeeae, hindering our interpretation of morphological evolution. Here, we sampled a significant number of nuclear loci using a Hyb-Seq approach and used these data to infer the Dipsacales phylogeny and estimate divergence times. Methods Sampling all major clades within the Dipsacales, we applied the Angiosperms353 probe set to 96 species. Data were filtered based on locus completeness and taxon recovery per locus, and trees were inferred using RAxML and ASTRAL. Plastid loci were assembled from off-target reads, and 10 fossils were used to calibrate dated trees. Results Varying numbers of targeted loci and off-target plastomes were recovered from most taxa. Nuclear and plastid data confidently place Heptacodium with Caprifolieae, implying homoplasy in calyx morphology, ovary development, and fruit type. Placement of Zabelia, and relationships within the Caprifolieae and Linnaeeae, remain uncertain. Dipsacales diversification began earlier than suggested by previous angiosperm-wide dating analyses, but many major splitting events date to the Eocene. Conclusions The Angiosperms353 probe set facilitated the assembly of a large, single-copy nuclear dataset for the Dipsacales. Nevertheless, many relationships remain unresolved, and resolution was poor for woody clades with low rates of molecular evolution. We favor expanding the Angiosperms353 probe set to include more variable loci and loci of special interest, such as developmental genes, within particular clades.