In ancient DNA research, the degraded nature of the samples generally results in poor yields of highly fragmented DNA; targeted DNA enrichment is thus required to maximize research outcomes. The three commonly used methods – array-based hybridization capture and in-solution capture using either RNA or DNA baits – have different characteristics that may influence the capture efficiency, specificity and reproducibility. Here we compare their performance in enriching pathogen DNA of Mycobacterium leprae and Treponema pallidum from 11 ancient and 19 modern samples. We find that in-solution approaches are the most effective method in ancient and modern samples of both pathogens and that RNA baits usually perform better than DNA baits. , METHOD SUMMARY We compared three targeted DNA enrichment strategies used in ancient DNA research for the specific enrichment of pathogen DNA regarding their efficiency, specificity and reproducibility for ancient and modern Mycobacterium leprae and Treponema pallidum samples. The three methods – array-based capture and in-solution capture with RNA and DNA baits – were all tested in three independent replicates.
Parasitoidism, a specialized life strategy in which a parasite eventually kills its host, is frequently found within the insect order Hymenoptera (wasps, ants and bees). A parasitoid lifestyle is one of two dominant life strategies within the hymenopteran superfamily Cynipoidea, with the other being an unusual plant-feeding behavior known as galling. Less commonly, cynipoid wasps exhibit inquilinism, a strategy where some species have adapted to usurp other species’ galls instead of inducing their own. Using a phylogenomic data set of ultraconserved elements from nearly all lineages of Cynipoidea, we here generate a robust phylogenetic framework and timescale to understand cynipoid systematics and the evolution of these life histories.
As one of the oldest known human diseases, leprosy or Hansen’s disease remains a public health concern around the world with over 200 000 new cases in 2018. Most human leprosy cases are caused by Mycobacterium leprae, but a small number of cases are now known to be caused by Mycobacterium lepromatosis, a sister taxon of M. leprae. The global pattern of genomic variation in M. leprae is not well defined. Particularly, in the Pacific Islands, the origins of leprosy are disputed. Historically, it has been argued that leprosy arrived on the islands during nineteenth century colonialism, but some oral traditions and palaeopathological evidence suggest an older introduction. To address this, as well as investigate patterns of pathogen exchange across the Pacific Islands, we extracted DNA from 39 formalin-fixed paraffin-embedded biopsy blocks dating to 1992–2016. Using whole-genome enrichment and next-generation sequencing, we produced nine M. leprae genomes dating to 1998–2015 and ranging from 4-63× depth of coverage. Phylogenetic analyses indicate that these strains belong to basal lineages within the M. leprae phylogeny, specifically falling in branches 0 and 5. The phylogeographical patterning and evolutionary dating analysis of these strains support a pre-modern introduction of M. leprae into the Pacific Islands.This article is part of the theme issue ‘Insights into health and disease from ancient biomolecules’.
The ‘red complex’ is an aggregate of three oral bacteria (Tannerella forsythia, Porphyromonas gingivalis and Treponema denticola) responsible for severe clinical manifestation of periodontal disease. Here, we report the first direct evidence of ancient T.forsythia DNA in dentin and dental calculus samples from archaeological skeletal remains that span from the Pre-Hispanic to the Colonial period in Mexico. We recovered twelve partial ancient T. forsythia genomes and observed a distinct phylogenetic placement of samples, suggesting that the strains present in Pre-Hispanic individuals likely arrived with the first human migrations to the Americas and that new strains were introduced with the arrival of European and African populations in the sixteenth century. We also identified instances of the differential presence of genes between periods in the T. forsythia ancient genomes, with certain genes present in Pre-Hispanic individuals and absent in Colonial individuals, and vice versa. This study highlights the potential for studying ancient T. forsythia genomes to unveil past social interactions through analysis of disease transmission. Our results illustrate the long-standing relationship between this oral pathogen and its human host, while also unveiling key evidence to understand its evolutionary history in Pre-Hispanic and Colonial Mexico.This article is part of the theme issue ‘Insights into health and disease from ancient biomolecules’.
Accurate methods for tracking individuals are crucial to the success of fisheries and aquaculture management. Management of migratory salmonid populations, which are important for the health of many economies, ecosystems, and indigenous cultures, is particularly dependent on data gathered from tagged fish. However, the physical tagging methods currently used have many challenges including cost, variable marker retention, and information limited to tagged individuals. Genetic tracking methods combat many of the problems associated with physical tags, but have their own challenges including high cost, potentially difficult marker design, and incompatibility of markers across species. Here we show the feasibility of a new genotyping method for parent-based tagging (PBT), where individuals are tracked through the inherent genetic relationships with their parents. We found that Rapture sequencing, a combination of restriction-site associated DNA and capture sequencing, provides sufficient data for parentage assignment. Additionally, the same capture bait set, which targets specific restriction-site associated DNA loci, can be used for both Rainbow Trout Oncorhynchus mykiss and Chinook Salmon Oncorhynchus tshawytscha. We input 248 single nucleotide polymorphisms from 1,121 samples to parentage assignment software and compared parent-offspring relationships of the spawning pairs recorded in a hatchery. Interestingly, our results suggest sperm contamination during hatchery spawning occurred in the production of 14% of offspring, further confirming the need for genetic tagging in accurately tracking individuals. PBT with Rapture successfully assigned progeny to parents with a 98.86% accuracy with sufficient genetic data. Cost for this pilot study was approximately $3 USD per sample. As costs vary based on the number of markers used and individuals sequenced, we expect that when implemented at a large-scale, per sample costs could be further decreased. We conclude that Rapture PBT provides a cost-effective and accurate alternative to the physical coded wire tags, and other genetic-based methods.
Taxonomic progress is often hindered by intrinsic factors, such as morphologically cryptic species that require a broad suite of methods to distinguish, and extrinsic factors, such as uncertainties in the allocation of scientific names to species. These uncertainties can be due to a wide variety of factors, including old and poorly preserved type specimens (which contain only heavily degraded DNA or have lost important diagnostic characters), inappropriately chosen type specimens (e.g. juveniles without diagnostic characters) or poorly documented type specimens (with unprecise, incorrect, or missing locality data). Thanks to modern sequencing technologies it is now possible to overcome many such extrinsic factors by sequencing DNA from name-bearing type specimens of uncertain assignment and assigning these to known genetic lineages. Here, we apply this approach to frogs of the Mantidactylus ambreensis complex, which was recently shown to consist of two genetic lineages supported by concordant differentiation in mitochondrial and nuclear genes. These lineages co-occur on the Montagne dʼAmbre Massif in northern Madagascar but appear to have diverged in allopatry. We use a recently published bait set based on three mitochondrial markers from all known Malagasy frog lineages to capture DNA sequences from the 127-year-old holotype of Mantidactylus ambreensis Mocquard, 1895. With the obtained sequences we are able to assign the name M. ambreensis to the lowland lineage, which is rather widespread in the rainforests of northern Madagascar, leaving the microendemic high-elevation lineage on Montagne d’Ambre in north Madagascar in need of description. We describe this species as Mantidactylus ambony sp. nov., differing from M. ambreensis in call parameters and a smaller body size. Thus, using target enrichment to obtain DNA sequence data from this old specimen, we were able to resolve the extrinsic (nomenclatural) hindrances to taxonomic resolution of this complex. We discuss the broad-scale versatility of this ‘barcode fishing’ approach, which can draw on the enormous success of global DNA barcoding initiatives to quickly and efficiently assign type specimens to lineages.
Ann Arbor, MI 48103
(d/b/a Daicel Arbor Biosciences)
All Rights Reserved.