Summary Stochastic activation of clustered Protocadherin (Pcdh) α, β, and γ genes generates a cell-surface identity code in individual neurons that functions in neural circuit assembly. Here, we show that Pcdhα gene choice involves the activation of an antisense promoter located in the first exon of each Pcdhα alternate gene. Transcription of an antisense long noncoding RNA (lncRNA) from this antisense promoter extends through the sense promoter, leading to DNA demethylation of the CTCF binding sites proximal to each promoter. Demethylation-dependent CTCF binding to both promoters facilitates cohesin-mediated DNA looping with a distal enhancer (HS5-1), locking in the transcriptional state of the chosen Pcdhα gene. Uncoupling DNA demethylation from antisense transcription by Tet3 overexpression in mouse olfactory neurons promotes CTCF binding to all Pcdhα promoters, resulting in proximity-biased DNA looping of the HS5-1 enhancer. Thus, antisense transcription-mediated promoter demethylation functions as a mechanism for distance-independent enhancer/promoter DNA looping to ensure stochastic Pcdhα promoter choice.
Ecosystem engineering species alter the physical structure of their environment and can create or modify habitats, having a massive impact on local biodiversity. Coralligenous reefs are highly diverse habitats endemic to the Mediterranean Sea built by calcareous benthic organisms among which Crustose Coralline Algae are the main engineering species. We analyzed the diversity of Lithophyllum stictiforme or L. cabiochiae in coralligenous habitats combining a multiple barcode and a population genomics approach with seascape features. Population genomics allowed disentangling pure spatial effects from environmental effects. We found that these taxa form a complex of eight highly divergent cryptic species that are easily identifiable using classic barcode markers (psbA, LSU, COI). Three factors have a significant effect on the relative abundances of these cryptic species: the location along the French Mediterranean coast, depth and Photosynthetic Active Radiation (PAR). The analysis of around 5000 SNPs for the most abundant species revealed genetic differentiation among localities in the Bay of Marseille but no differentiation between depths within locality. Thus, the effect of depth and PAR on cryptic species communities is not a consequence of restricted connectivity but rather due to differential settlement or survival among cryptic species. This differential is more likely driven by irradiance levels rather than by pressure or temperature. Both the genetic and species diversity patterns are congruent with the main patterns of currents in the Bay. Ecological differentiation among these engineering cryptic species, sensitive to ocean warming and acidification, could have important consequences on the diversity and structure of the coralligenous communities.
Mosses are a highly diverse lineage of land plants. Here, the authors provide a detailed phylogeny of 29 orders of moss, using nuclear and organelle data to provide robust hypotheses for most of the ordinal moss relationships.
The Cas12a nuclease from Acidaminococcus sp. (AsCas12a) can recognize a wider set of protospacer-adjacent motif (PAM) sequences, expanding the targeting range f
Abstract. The emergence of islands has been linked to spectacular radiations of diverse organisms. Although penguins spend much of their lives at sea, they rel
In barley and other cereal crops, phenological diversity drives adaptation to different cultivation areas. Improvement of barley yield and quality traits requires adaptation to specific production areas with introgression of favorable alleles dependent upon precise identification of the underlying genes. Combining targeted sequence capture systems with next-generation sequencing provides an efficient approach to explore target genetic regions at high resolution, and allows rapid discovery of thousands of genetic polymorphisms. Here, we apply a versatile target-capture method to detect genome-wide polymorphisms in 174 flowering time-related genes, chosen based on prior knowledge from barley, rice, and Arabidopsis thaliana. Sequences were generated across a phenologically diverse panel of 895 barley varieties, resulting a high mean depth coverage of ~25x allowing reliable discovery and calling of insertion-deletion (InDel) and single nucleotide polymorphisms (SNPs). Sequences of InDel and SNPs from the targeted enrichment were utilized to develop 67 Kompetitive Allele Specific PCR (KASP) markers for validation. This work provides researchers and breeders a comprehensive molecular toolkit for the selection of phenology-related traits in barley.
Avian diversification has been influenced by global climate change, plate tectonic movements, and mass extinction events. However, the impact of these factors on the diversification of the hyperdiverse perching birds (passerines) is unclear because family level relationships are unresolved and the timing of splitting events among lineages is uncertain. We analyzed DNA data from 4,060 nuclear loci and 137 passerine families using concatenation and coalescent approaches to infer a comprehensive phylogenetic hypothesis that clarifies relationships among all passerine families. Then, we calibrated this phylogeny using 13 fossils to examine the effects of different events in Earth history on the timing and rate of passerine diversification. Our analyses reconcile passerine diversification with the fossil and geological records; suggest that passerines originated on the Australian landmass ∼47 Ma; and show that subsequent dispersal and diversification of passerines was affected by a number of climatological and geological events, such as Oligocene glaciation and inundation of the New Zealand landmass. Although passerine diversification rates fluctuated throughout the Cenozoic, we find no link between the rate of passerine diversification and Cenozoic global temperature, and our analyses show that the increases in passerine diversification rate we observe are disconnected from the colonization of new continents. Taken together, these results suggest more complex mechanisms than temperature change or ecological opportunity have controlled macroscale patterns of passerine speciation.
Next generation sequencing (NGS) and genomic database mining allow biologists to gather and select large molecular datasets well suited to address phylogenomics and molecular evolution questions. Here we applied this approach to a mammal family, the Echimyidae, for which generic relationships have been difficult to recover and often referred to as a star phylogeny. These South-American spiny rats represent a family of caviomorph rodents exhibiting a striking diversity of species and life history traits. Using a NGS exon capture protocol, we isolated and sequenced ca. 500 nuclear DNA exons for 35 species belonging to all major echimyid and capromyid clades. Exons were carefully selected to encompass as much diversity as possible in terms of rate of evolution, heterogeneity in the distribution of site-variation and nucleotide composition. Supermatrix inferences and coalescence-based approaches were subsequently applied to infer this family’s phylogeny. The inferred topologies were the same for both approaches, and support was maximal for each node, entirely resolving the ambiguous relationships of previous analyses. Fast-evolving nuclear exons tended to yield more reliable phylogenies, as slower-evolving sequences were not informative enough to disentangle the short branches of the Echimyidae radiation. Based on this resolved phylogeny and on molecular and morphological evidence, we confirm the rank of the Caribbean hutias – formerly placed in the Capromyidae family – as Capromyinae, a clade nested within Echimyidae. We also name and define Carterodontinae, a new subfamily of Echimyidae, comprising the extant monotypic genus Carterodon from Brazil, which is the closest living relative of West Indies Capromyinae.
We present a method allowing to produce monodisperse droplets with volumes in the femtoliter range in a microchannel on demand. The method utilizes pulsed electric fields deforming the interface between an aqueous and an oil phase and pinching off droplets. Water and xanthan gum solutions are considered as disperse-phase liquids, and it is shown that the method can be applied even to solutions with a zero-shear rate viscosity more than 104-times higher than that of water. The droplet formation regimes are explored by systematically varying the pulse amplitude and duration as well as the salt concentration. The dependence of the process on the pulse amplitude can be utilized to tune the droplet size. To demonstrate the applicability of the electric-field-driven droplet generator, it is shown that the droplets can be used as versatile biological reaction compartments. It is proven that droplets containing a cell-free transcription–translation system execute gene transcription and protein biosynthesis in a timely and programmable fashion. Moreover, it is verified that biomolecules inside the aqueous droplets such as small RNAs can be diffusionally activated from the outside to induce a ligand-driven biochemical switch.
Ann Arbor, MI 48103
(d/b/a Daicel Arbor Biosciences)
All Rights Reserved.