Abstract. New study systems and tools are needed to understand how divergence and speciation occur between lineages with gene flow. Migratory birds often exhib
Determining species distributions can be extremely challenging but is crucial to ecological and conservation research. Environmental DNA (eDNA) approaches have shown particular promise in aquatic systems for several vertebrate and invertebrate species. For terrestrial animals, however, eDNA-based surveys are considerably more difficult due to the lack of or difficulty in obtaining appropriate sampling substrate. In water-limited ecosystem where terrestrial mammals are often forced to congregate at waterholes, water and sediment from shared water sources may be a suitable substrate for non-invasive eDNA approaches. We characterized mitochondrial DNA sequences from a broad range of terrestrial mammal species in two different African ecosystems (in Namibia and Tanzania) using eDNA isolated from native water, sediment, and water filtered through glass fiber filters. A hybridization capture enrichment with RNA probes targeting the mitochondrial genomes of 38 mammal species representing the genera/families expected at the respective ecosystems was employed, and 16 species were identified, with a maximum mitogenome coverage of 99.8%. Conventional genus-specific PCRs were tested on environmental samples for two genera produced fewer positive results than hybridization capture enrichment. An experiment with mock samples using DNA from non-African mammals showed that baits covering 30% of non-target mitogenomes produced 91% mitogenome coverage after capture. In the mock samples, over-representation of DNA of one species still allowed for the detection of DNA of other species that was at a 100-fold lower concentration. Hybridization capture enrichment of eDNA is therefore an effective method for monitoring terrestrial mammal species from shared water sources. This article is protected by copyright. All rights reserved.
Understanding the evolutionary mechanisms that affect the genetic divergence between diadromous and resident populations across heterogeneous environments is a challenging task. While diadromy may promote gene flow leading to a lack of genetic differentiation among populations, resident populations tend to be affected by local adaptation and/or plasticity. Studies on these effects on genomic divergence in non-model amphidromous species are scarce. Galaxias maculatus, one of the most widespread fish species in the Southern Hemisphere, exhibits two life histories, an ancestral diadromous, specifically, amphidromous form and a derived freshwater resident form. We examined the genetic diversity and divergence among 20 estuarine and resident populations across the Chilean distribution of G. maculatus and assessed the extent to which selection is involved in the differentiation among resident populations. We obtained nearly 4400 SNP markers using a RADcap approach for 224 individuals. As expected, collections from estuarine locations typically consist of diadromous individuals. Diadromous populations are highly differentiated from their resident counterparts by both neutral and putative adaptive markers. While diadromous populations exhibit high gene flow and lack site fidelity, resident populations appear to be the product of different colonization events with relatively low genetic diversity and varying levels of gene flow. In particular, the northernmost resident populations were clearly genetically distinct and reproductively isolated from each other suggesting local adaptation. Our study provides insights into the role of life history differences in the maintenance of genetic diversity and the importance of genetic divergence in species evolution.
The Neotropical region represents one of the greatest biodiversity hot spots on earth. Despite its unparalleled biodiversity, regional comparative phylogeographic studies are still scarce, with most focusing on model clades (e.g. birds) and typically examining a handful of loci. Here, we apply a genome-wide comparative phylogeographic approach to test hypotheses of codiversification of freshwater fishes in the trans-Andean region. Using target capture methods, we examined exon data for over 1,000 loci combined with complete mitochondrial genomes to study the phylogeographic history of five primary fish species (>150 individuals) collected from eight major river basins in Northwestern South America and Lower Central America. To assess their patterns of genetic structure, we inferred genealogical concordance taking into account all major aspects of phylogeography (within loci, across multiple genes, across species and among biogeographic provinces). Based on phylogeographic concordance factors, we tested four a priori biogeographic hypotheses, finding support for three of them and uncovering a novel, unexpected pattern of codiversification. The four emerging inter-riverine patterns are as follows: (a) Tuira + Atrato, (b) Ranchería + Catatumbo, (c) Magdalena system and (d) Sinú + Atrato. These patterns are interpreted as shared responses to the complex uplifting and orogenic processes that modified or sundered watersheds, allowing codiversification and speciation over geological time. We also find evidence of cryptic speciation in one of the species examined and instances of mitochondrial introgression in others. These results help further our knowledge of the historical geographic factors shaping the outstanding biodiversity of the Neotropics.
Species abundance data are critical for testing ecological theory, but obtaining accurate empirical estimates for many taxa is challenging. Proxies for species abundance can help researchers circumvent time and cost constraints that are prohibitive for long-term sampling. Under simple demographic models, genetic diversity is expected to correlate with census size, such that genome-wide heterozygosity may provide a surrogate measure of species abundance. We tested whether nucleotide diversity is correlated with long-term estimates of abundance, occupancy and degree of ecological specialization in a diverse lizard community from arid Australia. Using targeted sequence capture, we obtained estimates of genomic diversity from 30 species of lizards, recovering an average of 5,066 loci covering 3.6 Mb of DNA sequence per individual. We compared measures of individual heterozygosity to a metric of habitat specialization to investigate whether ecological preference exerts a measurable effect on genetic diversity. We find that heterozygosity is significantly correlated with species abundance and occupancy, but not habitat specialization. Demonstrating the power of genomic sampling, the correlation between heterozygosity and abundance/occupancy emerged from considering just one or two individuals per species. However, genetic diversity does no better at predicting abundance than a single day of traditional sampling in this community. We conclude that genetic diversity is a useful proxy for regional-scale species abundance and occupancy, but a large amount of unexplained variation in heterozygosity suggests additional constraints or a failure of ecological sampling to adequately capture variation in true population size.
Objectives: Dental calculus is among the richest known sources of ancient DNA in the archaeological record. Although most DNA within calculus is microbial, it has been shown to contain sufficient human DNA for the targeted retrieval of whole mitochondrial genomes. Here, we explore whether calculus is also a viable substrate for whole human genome recovery using targeted enrichment techniques.
In this work, we investigated sequence variation, evolutionary constraint, and selection at the CD163 gene in pigs. A functional CD163 protein is required for infection by porcine reproductive and respiratory syndrome virus, which is a serious pathogen with major impacts on pig production.
As expressed “God made the bulk; the surface was invented by the devil” by W. Pauli, the surface has remarkable properties because broken symmetry in surface alters the material properties. In biological systems, the smallest functional and structural unit, which has a functional bulk space enclosed by a thin interface, is a cell. Cells contain inner cytosolic soup in which genetic information stored in DNA can be expressed through transcription (TX) and translation (TL). The exploration of cell-sized confinement has been recently investigated by using micron-scale droplets and microfluidic devices. In the first part of this review article, we describe recent developments of cell-free bioreactors where bacterial TX-TL machinery and DNA are encapsulated in these cell-sized compartments. Since synthetic biology and microfluidics meet toward the bottom-up assembly of cell-free bioreactors, the interplay between cellular geometry and TX-TL advances better control of biological structure and dynamics in vitro system. Furthermore, biological systems that show self-organization in confined space are not limited to a single cell, but are also involved in the collective behavior of motile cells, named active matter. In the second part, we describe recent studies where collectively ordered patterns of active matter, from bacterial suspensions to active cytoskeleton, are self-organized. Since geometry and topology are vital concepts to understand the ordered phase of active matter, a microfluidic device with designed compartments allows one to explore geometric principles behind self-organization across the molecular scale to cellular scale. Finally, we discuss the future perspectives of a microfluidic approach to explore the further understanding of biological systems from geometric and topological aspects.
Background: The chromosome-specific probe is a fundamental tool of chromosome painting and has been commonly applied in mammalian species. The technology, however, has not been widely applied in plants due to a lack of methodologies for probe development. Identification and labeling of a large number of oligonucleotides (oligos) specific to a single chromosome offers us an opportunity to establish chromosome-specific probes in plants. However, never before has whole chromosome painting been performed in rice. Results: We developed a pooled chromosome 9-specific probe in rice, which contains 25,000 oligos based on the genome sequence of a japonica rice (Oryza sativa L., AA, 2n = 2× = 24). Chromosome 9 was easily identified in both japonica and indica rice using this chromosome 9-painting probe. The probe was also successfully used to identify and characterize chromosome 9 in additional lines of O. sativa, a translocation line, two new aneuploids associated with chromosome 9 and a wild rice (Oryza eichingeri A. Peter, CC, 2n = 2× = 24). Conclusion: The study reveals that a pool of oligos specific to a chromosome is a useful tool for chromosome painting in rice.
Ann Arbor, MI 48103
(d/b/a Daicel Arbor Biosciences)
All Rights Reserved.