Clades of marine fishes exhibit many patterns of diversification, ranging from relatively constant throughout time to rapid changes in the rates of speciation and extinction. The goatfishes (Syngnatharia: Mullidae) are a family of marine, reef associated fishes with a relatively recent origin, distributed globally in tropical and temperate waters. Despite their abundance and economic importance, the goatfishes remain one of the few coral reef families for which the species level relationships have not been examined using genomic techniques. Here we use phylogenomic analysis of ultra-conserved elements (UCE) and exon data to resolve a well-supported, time-calibrated phylogeny for 72 species of goatfishes, supporting a recent crown age of the goatfishes at 21.9 million years ago. We used this framework to test hypotheses about the associations among body shape morphometrics, taxonomy, and phylogeny, as well as to explore relative diversification rates across the phylogeny. Body shape was strongly associated with generic-level taxonomy of goatfishes, with morphometric analyses showing evidence for high phylogenetic signal across all morphotypes. Rates of diversification in this clade reveal a recent sharp increase in lineage accumulation, with 92% of the goatfish species sampled across all clades and major body plans having originated in just the past 5 million years. We suggest that habitat diversity in the early Pliocene oceans and the generalist ecology of goatfishes are key factors in the unusual evolutionary tempo of the family Mullidae.
North American river sturgeons of the genus Scaphirhynchus include three species: S. platorynchus, S. albus and S. suttkusi that live in the Missouri, Mississippi, and Mobile basin. All species of Scaphirhynchus are threatened, endangered or critically endangered due to a combination of factors including of habitat loss and over-harvesting. Genetic tools have been applied for conservation studies in this group, however, the tetrapolyploid nature of the genome of these species have brought a huge challenge to development of nuclear markers for these species and limited knowledge that could be obtained, such as the phylogenetic intrarelationships and population genetics of this genus. Moreover, unintentional hybridization arose from two species of Scaphirhynchus (S. platorynchus and S. albus) that share the same spawning space. To address the problem of species identification and provide genetic markers for population genetic studies on Scaphirhynchus, we developed a bioinformatics pipeline to find SNP markers, based on comparison between single-copy loci of diploid gar and two released autotetraploid genomes of Acipenseriformes. We found 77 SNPs at single-copy loci and 642 SNPs at double-copy loci after filtering. Both the single-copy and double-copy loci supported the same phylogenetic relationship among the three species, in which S. albus and S. platorynchus were more closely related to each other than either of them to S. suttkusi. The principal component analysis using these SNPs also showed that S. albus and S. platorynchus were close to each other. The SNP markers developed in this study should facilitate further researches on population genetics and conservation of the Scaphirhynchus sturgeons.
The monocot family Costaceae Nakai consists of seven genera but their mutual relationships have not been satisfactorily resolved in previous studies employing classical molecular markers. Phylogenomic analyses of 365 nuclear genes and nearly-complete plastome data provides almost fully resolved insights into their diversification. Paracostus is identified as sister to all other taxa, followed by several very short branches leading to discrete lineages, suggesting an ancient rapid radiation of these early lineages and leaving the exact relationships among them unresolved. Relationships among Chamaecostus, Dimerocostus and Monocostus confirmed earlier findings that these genera form a monophyletic group. The Afro-American Costus is also monophyletic. By contrast, Tapeinochilos appeared as a well-supported crown lineage of Cheilocostus rendering it paraphyletic. As these two genera differ morphologically from one another owing to a shift from insect- to bird-pollination, we propose to keep both names. The divergence time within Costaceae was estimated using penalized likelihood utilizing two fossils within Zingiberales, †Spirematospermum chandlerae and †Ensete oregonense, indicated a relatively recent diversification of Costaceae, between 18–9 Mya. Based on these data, the current pantropical distribution of the family is hypothesized to be the result of several long-distance intercontinental dispersal events, which do not correlate with global geoclimatic changes.
Background and Aims A targeted enrichment NGS approach was used to construct the phylogeny of Amomum Roxb. (Zingiberaceae). Phylogenies based on hundreds of nuclear genes, the whole plastome and the rDNA cistron were compared with an ITS-based phylogeny. Trends in genome size (GS) evolution were examined, chromosomes were counted and the geographical distribution of phylogenetic lineages was evaluated. Methods In total, 92 accessions of 54 species were analysed. ITS was obtained for 79 accessions, 37 accessions were processed with Hyb-Seq and sequences from 449 nuclear genes, the whole cpDNA, and the rDNA cistron were analysed using concatenation, coalescence and supertree approaches. The evolution of absolute GS was analysed in a phylogenetic and geographical context. The chromosome numbers of 12 accessions were counted. Key Results Four groups were recognised in all datasets though their mutual relationships differ among datasets. While group A (A. subulatum and A. petaloideum) is basal to the remaining groups in the nuclear gene phylogeny, in the cpDNA topology it is sister to group B (A. repoeense and related species) and, in the ITS topology, it is sister to group D (the Elettariopsis lineage). The former Elettariopsis makes a monophyletic group. There is an increasing trend in GS during evolution. The largest GS values were found in group D in two tetraploid taxa, A. cinnamomeum and A. aff. biphyllum (both 2n = 96 chromosomes). The rest varied in GS (2C = 3.54–8.78 pg) with a constant chromosome number 2n = 48. There is a weak connection between phylogeny, GS and geography in Amomum. Conclusions Amomum consists of four groups, and the former Elettariopsis is monophyletic. Species in this group have the largest GS. Two polyploids were found and GS greatly varied in the rest of Amomum.
Glioblastoma is the most common malignant cancer of the central nervous system (CNS) in adults. Glioblastoma cells show increased glucose consumption associated with poor prognosis. Since mitochondria play a crucial role in energy metabolism, mitochondrial mutations and mitochondrial DNA copy number changes may function as biomarkers. As the brain is difficult to access, analysis of mitochondria directly from the brain tissue represents a challenge for neuropathology. Exosome analysis is an alternative (still poorly explored) approach to investigate molecular changes in CNS tumors. Here we analyze characteristics of brain tissue DNA and plasma-derived exosomal DNA (exoDNA) of 44 glioblastoma patients and 40 control individuals. Quantitative real-time PCR was performed to determine mtDNA copy numbers and the Kruskal-Wallis and Mann-Whitney U test were used for statistical analysis of data. Subsequently, sequencing libraries were prepared and sequenced on the MiSeq platform to identify mtDNA point mutations. Tissue mtDNA copy number was different among controls and patients in multiple comparisons. A similar tendency was detected in exosomes. Based on NGS analysis, several mtDNA point mutations showed slightly different frequencies between cases and controls, but the clinical relevance of these observations is difficult to assess and likely less than that of overall mtDNA copy number changes. Allele frequencies of variants were used to determine the level of heteroplasmy (found to be higher in exo-mtDNA of control individuals). Despite the suggested potential, the use of such a biomarker for the screening and/or diagnosis of glioblastomas is still limited, thus further study will be required.
Since the beginning of the SARS-CoV-2 coronavirus pandemic, genome sequencing is essential to monitor viral mutations over time and by territory. This need for complete genetic information is further reinforced by the rapid spread of variants of concern. In this paper, we assess the ability of the hybridization technique, Capture-Seq, to detect the SARS-CoV-2 genome, either partially or in its integrity on patients samples. We studied 20 patient nasal swab samples broken down into five series of four samples of equivalent viral load from CT25 to CT36+ . For this, we tested 3 multi-virus panel as well as 2 SARS-CoV-2 only panels. The panels were chosen based on their specificity, global or specific, as well as their technological difference in the composition of the probes: ssRNA, ssDNA and dsDNA. The multi-virus panels are able to capture high-abundance targets but fail to capture the lowest-abundance targets, with a high percentage of off-target reads corresponding to the abundance of the host sequences. Both SARS-CoV-2-only panels were very effective, with high percentage of reads corresponding to the target. Overall, capture followed by sequencing is very effective for the study of SARS-CoV-2 in low-abundance patient samples and is suitable for samples with CT values up to 35.
Abstract Phylogenomic analysis of large genome-wide sequence data sets can resolve phylogenetic tree topologies for large species groups, help test the accuracy of and improve resolution for earlier multilocus studies and reveal the level of agreement or concordance within partitions of the genome for various tree topologies. Here we used a target-capture approach to sequence 1,088 single-copy exons for more than 200 labrid fishes together with more than 100 outgroup taxa to generate a new data-rich phylogeny for the family Labridae. Our time-calibrated phylogenetic analysis of exon-capture data pushes the root node age of the family Labridae back into the Cretaceous to about 79 Ma years ago. The monotypic Centrogenys vaigiensis, and the order Uranoscopiformes (stargazers) are identified as the sister lineages of Labridae. The phylogenetic relationships among major labrid subfamilies and within these clades were largely congruent with prior analyses of select mitochondrial and nuclear datasets. However, the position of the tribe Cirrhilabrini (fairy and flame wrasses) showed discordance, resolving either as the sister to a crown julidine clade or alternatively sister to a group formed by the labrines, cheilines and scarines. Exploration of this pattern using multiple approaches leads to slightly higher support for this latter hypothesis, highlighting the importance of genome-level data sets for resolving short internodes at key phylogenetic positions in large, economically important groups of coral reef fishes. More broadly, we demonstrate how accounting for sources of biological variability from incomplete lineage sorting and exploring systematic error at conflicting nodes can aid in evaluating alternative phylogenetic hypotheses.
Species- and genetic diversity can change in parallel, resulting in a species-genetic diversity correlation (SGDC) and raising the question if the same drivers influence both biological levels of diversity. The SGDC can be either positive or negative, depending on whether the species diversity and the genetic diversity of the measured species respond in the same or opposite way to drivers. Using a traditional species diversity approach together with ultra-conserved elements and high throughput sequencing, we evaluated the SGDCs in benthic macrofauna communities in the Baltic Sea, a geologically young brackish water sea characterised by its steep salinity gradient and low species richness. Assessing SGDCs from six focal marine invertebrate species from different taxonomic groups and with differing life histories and ecological functions on both a spatial and temporal scale gives a more comprehensive insight into the community dynamics of this young ecosystem and the extrinsic factors that might drive the SGDCs.
Bottom-up approaches in creating artificial cells that can mimic natural cells have significant implications for both basic research and translational application. Among various artificial cell models, liposome is one of the most sophisticated systems. By encapsulating proteins and associated biomolecules, they can functionally reconstitute foundational features of biological cells, such as the ability to divide, communicate, and undergo shape deformation. Yet constructing liposome artificial cells from the genetic level, which is central to generate self-sustained systems remains highly challenging. Indeed, many studies have successfully established the expression of gene-coded proteins inside liposomes. Further, recent endeavors to build a direct integration of gene-expressed proteins for reconstituting molecular functions and phenotypes in liposomes have also significantly increased. Thus, this review presents the development of liposome-based artificial cells to demonstrate the process of gene-expressed proteins and their reconstitution to perform desired molecular and cell-like functions. The molecular and cellular phenotypes discussed here include the self-production of membrane phospholipids, division, shape deformation, self-DNA/RNA replication, fusion, and intercellular communication. Together, this review gives a comprehensive overview of gene-expressing liposomes that can stimulate further research of this technology and achieve artificial cells with superior properties in the future.
Ann Arbor, MI 48103
(d/b/a Daicel Arbor Biosciences)
All Rights Reserved.