Author summary Mycobacterium leprae, which causes leprosy in humans, also infects nine-banded armadillos, red squirrels, and nonhuman primates. Genomic data for M. leprae strains from wild armadillos and red squirrels show that humans were responsible for the original introduction of M. leprae to these species. It is not known whether naturally occurring leprosy among nonhuman primates is due to incidental infections from humans or whether nonhuman primates can serve as a host for M. leprae. To this end, we sequenced complete genomes of M. leprae strains from three naturally infected nonhuman primates. Our results suggest that M. leprae strains can be transmitted from humans to nonhuman primates as well as between nonhuman primate species, and thus, other primates might serve as a host for M. leprae in the wild. We also assessed whether wild ring-tailed lemurs from Madagascar and chimpanzees from Uganda showed presence of M. leprae infection. Although these populations tested negative for M. leprae infection, further research on the prevalence of M. leprae in other wild nonhuman primate populations, especially in leprosy-endemic regions, is warranted.

Whole genome duplication plays a central role in plant evolution. There are two main classes of polyploid formation: autopolyploids which arise within one species by doubling of similar homologous genomes; in contrast, allopolyploidy (hybrid polyploidy) arise via hybridization and subsequent doubling of nonhomologous (homoeologous) genomes. The distinction between polyploid origins can be made using gene phylogenies, if alleles from each genome can be correctly retrieved. We examined whether two closely related tetraploid Mediterranean shrubs (Medicago arborea and M. strasseri) have an allopolyploid origin – a question that has remained unsolved despite substantial previous research. We sequenced and analyzed ten low-copy nuclear genes from these and related species, phasing all alleles. To test the efficacy of allele phasing on the ability to recover the evolutionary origin of polyploids, we compared these results to analyses using unphased sequences.

Here we show that the most venomous spiders in the world are phylogenetically misplaced. Australian atracine spiders (family Hexathelidae), including the notorious Sydney funnel-web spider Atrax robustus, produce venom peptides that can kill people. Intriguingly, eastern Australian mouse spiders (family Actinopodidae) are also medically dangerous, possessing venom peptides strikingly similar to Atrax hexatoxins. Based on the standing morphology-based classification, mouse spiders are hypothesized distant relatives of atracines, having diverged over 200 million years ago. Using sequence-capture phylogenomics, we instead show convincingly that hexathelids are non-monophyletic, and that atracines are sister to actinopodids. Three new mygalomorph lineages are elevated to the family level, and a revised circumscription of Hexathelidae is presented. Re-writing this phylogenetic story has major implications for how we study venom evolution in these spiders, and potentially genuine consequences for antivenom development and bite treatment research. More generally, our research provides a textbook example of the applied importance of modern phylogenomic research.

Author summary The Scandinavian peninsula was the last part of Europe to be colonized after the Last Glacial Maximum. The migration routes, cultural networks, and the genetic makeup of the first Scandinavians remain elusive and several hypotheses exist based on archaeology, climate modeling, and genetics. By analyzing the genomes of early Scandinavian hunter-gatherers, we show that their migrations followed two routes: one from the south and another from the northeast along the ice-free Norwegian Atlantic coast. These groups met and mixed in Scandinavia, creating a population more diverse than contemporaneous central and western European hunter-gatherers. As northern Europe is associated with cold and low light conditions, we investigated genomic patterns of adaptation to these conditions and genes known to be involved in skin pigmentation. We demonstrate that Mesolithic Scandinavians had higher levels of light pigmentation variants compared to the respective source populations of the migrations, suggesting adaptation to low light levels and a surprising signal of genetic continuity in TMEM131, a gene that may be involved in long-term adaptation to the cold.

Author summary Hepatitis B virus (HBV) exerts formidable morbidity and mortality in humans. We used ancient DNA techniques to recover the complete genome sequence of an HBV from the mummified remains of a child discovered in the 16th century from Naples, Italy. Strikingly, our analysis of this specimen resulted in two contrasting findings: while the damage patterns lend credence to this HBV sequence being authentically 16th century, phylogenetic analysis revealed a close relationship to recently sampled viruses as expected if the sequence were a modern contaminant. We reconcile these two observations by showing that HBV evolution over the last ~450 years is characterized by a marked lack of temporal structure that hinders attempts to resolve the evolutionary time-scale of this important human pathogen.

We sequenced the complete mitochondrial genomes of three pairs of congeneric peripheral fishes distributed on either side of the Isthmus of Panama in order to test their status as geminate species pairs. Our phylogenetic analysis did not support a sister relationship between Gobiomorus dormitor and G. maculatus and therefore they cannot be considered geminates. The average genetic distance of protein-coding genes between Sicydium altum and S. salvini was more than two times larger than between Atlantic and Pacific Awaous banana, suggesting different timings for their divergence across the Isthmus of Panama.

Over the past decade, a new generation of cell-free transcription-translation (TXTL) systems has been devised for emerging multidisciplinary applications. The DNA-dependent in vitro protein synthesis technology has been developed to tackle applications in synthetic biology, biological and chemical engineering, as well as quantitative disciplines such as biophysics. In addition to being convenient at the biosafety level, the new TXTL platforms are user-friendly; more affordable; more versatile at the level of transcription, with a TX repertoire covering hundreds of parts; and more powerful, with protein production reaching a few mg/mL in batch and continuous modes. As a consequence, TXTL is rising up as a popular research tool and is used by a growing research community. While TXTL is proving reliable for an increasing number of applications, it is important to gain appropriate TXTL skills, especially for quantitative applications. TXTL has become particularly useful to rapidly prototype genetic devices , from single regulatory elements to elementary circuit motifs . In this chapter, we describe the basic procedures to develop appropriate TXTL practices for the characterization of such genetic parts. We use an all E. coli TXTL system developed in our lab, now commercialized by Arbor Biosciences under the name myTXTL.

CRISPR-Cas systems have offered versatile technologies for genome engineering, yet their implementation has been outpaced by the ongoing discovery of new Cas nucleases and anti-CRISPR proteins. Here, we present the use of E. coli cell-free transcription-translation systems (TXTL) to vastly improve the speed and scalability of CRISPR characterization and validation. Unlike prior approaches that require protein purification or live cells, TXTL can express active CRISPR machinery from added plasmids and linear DNA, and TXTL can output quantitative dynamics of DNA cleavage and gene repression. To demonstrate the applicability of TXTL, we rapidly measure guide RNA-dependent DNA cleavage and gene repression for single- and multi-effector CRISPR-Cas systems, accurately predict the strength of gene repression in E. coli, quantify the inhibitory activity of anti-CRISPR proteins, and develop a fast and scalable high-throughput screen for protospacer-adjacent motifs. These examples underscore the potential of TXTL to facilitate the characterization and application of CRISPR technologies across their many uses.

Abstract. The bottom-up construction of biological entities from genetic information provides a broad range of opportunities to better understand fundamental p

Abstract. Deoxyribonucleic acid (DNA) nanotechnology is a growing field with potential intracellular applications. In this work, we use an Escherichia coli cel