Although considerable progress has been made in understanding the genetic basis of morphologic traits (for example, body size and coat color) in dogs and wolves, the genetic basis of their behavioral divergence is poorly understood. An integrative approach using both behavioral and genetic data is required to understand the molecular underpinnings of the various behavioral characteristics associated with domestication. We analyze a 5-Mb genomic region on chromosome 6 previously found to be under positive selection in domestic dog breeds. Deletion of this region in humans is linked to Williams-Beuren syndrome (WBS), a multisystem congenital disorder characterized by hypersocial behavior. We associate quantitative data on behavioral phenotypes symptomatic of WBS in humans with structural changes in the WBS locus in dogs. We find that hypersociability, a central feature of WBS, is also a core element of domestication that distinguishes dogs from wolves. We provide evidence that structural variants in GTF2I and GTF2IRD1, genes previously implicated in the behavioral phenotype of patients with WBS and contained within the WBS locus, contribute to extreme sociability in dogs. This finding suggests that there are commonalities in the genetic architecture of WBS and canine tameness and that directional selection may have targeted a unique set of linked behavioral genes of large phenotypic effect, allowing for rapid behavioral divergence of dogs and wolves, facilitating coexistence with humans. We hypothesize that selection during dog domestication targeted CNVs associated with hypersociability. We hypothesize that selection during dog domestication targeted CNVs associated with hypersociability.

The bottom-up construction of cell-sized compartments programmed with DNA that are capable of sensing the chemical and physical environment remains challenging in synthetic cell engineering. Here, we construct mechanosensitive liposomes with biosensing capability by expressing the E. coli channel MscL and a calcium biosensor using cell-free expression.

Flower size varies dramatically across angiosperms, representing innovations over the course of >130 million years of evolution and contributing substantially to relationships with pollinators. However, the genetic underpinning of flower size is not well understood. Saltugilia (Polemoniaceae) provides an excellent non-model system for extending the genetic study of flower size to interspecific differences that coincide with variation in pollinators.

Species delimitation has been divided by two approaches: DNA barcoding that focuses on standardization of the genetic marker and multilocus methods that place a premium on genomic coverage and conceptual rigor in modeling the divergence process. Most multilocus methods fail as barcodes, however, because few assay the same marker set and are therefore not readily comparable across studies and databases. We introduce ultraconserved elements (UCEs) as potential genomic barcodes that allow rigorous species delimitation and a bridge to DNA barcoding database to allow both rigorous species delimitation and standardized identification of delimited taxa. UCEs query thousands of loci across the nuclear genome in way that is replicable across broad taxonomic groups (i.e., vertebrates). We apply UCEs to species delimitation in a species complex of frogs found in the Mexican Highlands. Sarcohyla contains 24 described species, many of which are critically endangered and known only from their type localities. Evidence suggests that one broadly distributed member of the genus, S. bistincta, might contain multiple species. We generated data from 1,891 UCEs, which contained 1,742 informative SNPs for S. bistincta and closely related species. We also captured mitochondrial genomes for most samples as off-target bycatch of the UCE enrichment process. Phylogenies from UCEs and mtDNA agreed in many ways, but differed in that mtDNA suggested a more complex evolutionary history perhaps influenced by reticulate processes. The species delimitation method we used identified eight putative species (which we call lineages pending further study) within S. bistincta. Being able to compare linked mtDNA data to existing sequences on Genbank allowed us to identify one of these lineages nested within S. bistincta as an already-described species, S. pentheter. Another lineage nested within S. bistincta is currently being described as a new species (referred to here as sp. nov.). The remaining six lineages fell into two non-sister clades, one containing the core S. bistincta mostly in Oaxaca and Guerrero, and another in the Transvolcanic Belt. The latter clade, at 10% divergence in mtDNA and paraphyletic with respect to other S. bistincta, is a clear candidate for species status. Our study demonstrates not only that UCEs can be used as effective genomic DNA barcodes, but that combining multilocus genomic data with mtDNA is a powerful approach for both delimiting species and identifying them in poorly described and phenotypically challenging groups.

Higher eukaryotic chromosomes are organized into topologically constrained functional domains; however, the molecular mechanisms required to sustain these complex interphase chromatin structures are unknown. A stable matrix underpinning nuclear organization was hypothesized, but the idea was abandoned as more dynamic models of chromatin behavior became prevalent. Here, we report that scaffold attachment factor A (SAF-A), originally identified as a structural nuclear protein, interacts with chromatin-associated RNAs (caRNAs) via its RGG domain to regulate human interphase chromatin structures in a transcription-dependent manner. Mechanistically, this is dependent on SAF-A’s AAA+ ATPase domain, which mediates cycles of protein oligomerization with caRNAs, in response to ATP binding and hydrolysis. SAF-A oligomerization decompacts large-scale chromatin structure while SAF-A loss or monomerization promotes aberrant chromosome folding and accumulation of genome damage. Our results show that SAF-A and caRNAs form a dynamic, transcriptionally responsive chromatin mesh that organizes large-scale chromosome structures and protects the genome from instability.

One hundred and seventy-three years ago, the last two Great Auks, Pinguinus impennis, ever reliably seen were killed. Their internal organs can be found in the collections of the Natural History Museum of Denmark, but the location of their skins has remained a mystery. In 1999, Great Auk expert Errol Fuller proposed a list of five potential candidate skins in museums around the world. Here we take a palaeogenomic approach to test which—if any—of Fuller’s candidate skins likely belong to either of the two birds. Using mitochondrial genomes from the five candidate birds (housed in museums in Bremen, Brussels, Kiel, Los Angeles, and Oldenburg) and the organs of the last two known individuals, we partially solve the mystery that has been on Great Auk scholars’ minds for generations and make new suggestions as to the whereabouts of the still-missing skin from these two birds.

Hybridization is a frequent and important force in plant evolution. Next-generation sequencing (NGS) methods offer new possibilities for clade resolution and ambitious sampling of gene genealogies, yet difficulty remains in detecting deep reticulation events using currently available methods. We reconstructed the phylogeny of diploid representatives of Amaryllidaceae tribe Hippeastreae to test the hypothesis of ancient hybridizations preceding the radiation of its major subclade, Hippeastrinae. Through hybrid enrichment of DNA libraries and NGS, we obtained data for 18 nuclear loci through a curated assembly approach and nearly complete plastid genomes for 35 ingroup taxa plus 5 outgroups. Additionally, we obtained alignments for 39 loci through an automated assembly algorithm. These data were analyzed with diverse phylogenetic methods, including concatenation, coalescence-based species tree estimation, Bayesian concordance analysis, and network reconstructions, to provide insights into the evolutionary relationships of Hippeastreae. Causes for gene tree heterogeneity and cytonuclear discordance were examined through a Bayesian posterior predictive approach (JML) and coalescent simulations. Two major clades were found, Hippeastrinae and Traubiinae, as previously reported. Our results suggest the presence of two major nuclear lineages in Hippeastrinae characterized by different chromosome numbers: (1) Tocantinia and Hippeastrum with 2n = 22, and (2) Eithea, Habranthus, Rhodophiala, and Zephyranthes mostly with 2n = 12, 14, and 18. Strong cytonuclear discordance was confirmed in Hippeastrinae, and a network scenario with at least six hybridization events is proposed to reconcile nuclear and plastid signals, along a backbone that may also have been affected by incomplete lineage sorting at the base of each major subclade.