Wheat breeders and academics alike use Single Nucleotide Polymorphisms (SNPs) as molecular markers to characterise regions of interest within the hexaploid wheat genome. A number of SNP-based genotyping platforms are available and their utility depends upon factors such as the available technologies, number of data points required, budgets and the technical expertise required. Unfortunately, markers can rarely be exchanged between existing and newly developed platforms, meaning that previously generated data cannot be compared, or combined, with more recently generated datasets. We predict that genotyping by sequencing will become the predominant genotyping technology within the next five to ten years. With this in mind, to ensure that data generated from current genotyping platforms continues to be of use, we have designed and utilised SNP-based capture probes from several thousand existing and publicly available probes from Axiom® and KASP™ genotyping platforms. We have validated our capture probes in a targeted genotyping by sequencing protocol using thirty one previously genotyped UK elite hexaploid wheat accessions. Data comparisons between targeted genotyping by sequencing, Axiom® array genotyping and KASP™ genotyping assays, identified a set of 3,256 probes which reliably bring together targeted genotyping by sequencing data with the previously available marker dataset. As such these probes are likely to be of considerable value to the wheat community. The probe details, full probe sequences and a custom built analysis pipeline may be freely downloaded from the CerealsDB. This article is protected by copyright. All rights reserved.

Phylogeography can provide insight into the potential for speciation and identify geographic regions and evolutionary processes associated with species richness and evolutionary endemism. In the marine environment, highly mobile species sometimes show structured patterns of diversity, but the processes isolating populations and promoting differentiation are often unclear. The Delphinidae (oceanic dolphins) are a striking case in point and, in particular, bottlenose dolphins (Tursiops spp.). Understanding the radiation of species in this genus is likely to provide broader inference about the processes that determine patterns of biogeography and speciation, because both fine-scale structure over a range of kilometers and relative panmixia over an oceanic range are known for Tursiops populations. In our study, novel Tursiops spp. sequences from the northwest Indian Ocean (including mitogenomes and two nuDNA loci) are included in a worldwide Tursiops spp. phylogeographic analysis. We discover a new ‘aduncus’ type lineage in the Arabian Sea (off India, Pakistan and Oman) that diverged from the Australasian lineage ∼261 Ka. Effective management of coastal dolphins in the region will need to consider this new lineage as an evolutionarily significant unit. We propose that the establishment of this lineage could have been in response to climate change during the Pleistocene and show data supporting hypotheses for multiple divergence events, including vicariance across the Indo-Pacific barrier and in the northwest Indian Ocean. These data provide valuable transferable inference on the potential mechanisms for population and species differentiation across this geographic range.

The origin of the European bison (Bison bonasus, Linnaeus, 1758) has been widely discussed and investigated in recent years. The species had a wide historic geographic distribution throughout the European continent during the middle and late Holocene, ranging from France in the west to the Caucasus in the east. However, archaeological evidence is needed to resolve the southern extent of the European bison distribution. We discovered one bison skull fragment during archaeological excavations in 2008 in the area of Yenikapı Metro and Marmaray (Turkey). Radiocarbon dating indicated the skull was deposited during the Byzantine period (seventh to eighth century AD). Mitochondrial genome analyses provided clear evidence that the skull was from a European bison. This is the first unambiguous evidence of the presence of this species in southeastern Europe during Byzantine times, which validates the historical written records of a potentially wider range of the European bison in historical times.

Uncoupling protein 1 (UCP1) permits non-shivering thermogenesis (NST) when highly expressed in brown adipose tissue (BAT) mitochondria. Exclusive to placental mammals, BAT has commonly been regarded to be advantageous for thermoregulation in hibernators, small-bodied species, and the neonates of larger species. While numerous regulatory control motifs associated with UCP1 transcription have been proposed for murid rodents, it remains unclear whether these are conserved across the eutherian mammal phylogeny and hence essential for UCP1 expression. To address this shortcoming, we conducted a broad comparative survey of putative UCP1 transcriptional regulatory elements in 139 mammals (135 eutherians). We find no evidence for presence of a UCP1 enhancer in monotremes and marsupials, supporting the hypothesis that this control region evolved in a stem eutherian ancestor. We additionally reveal that several putative promoter elements (e.g. CRE-4, CCAAT) identified in murid rodents are not conserved among BAT-expressing eutherians, and together with the putative regulatory region (PRR) and CpG island do not appear to be crucial for UCP1 expression. The specificity and importance of the upTRE, dnTRE, URE1, CRE-2, RARE-2, NBRE, BRE-1, and BRE-2 enhancer elements first described from rats and mice are moreover uncertain as these motifs differ substantially—but generally remain highly conserved—in other BAT-expressing eutherians. Other UCP1 enhancer motifs (CRE-3, PPRE, and RARE-3) as well as the TATA box are also highly conserved in nearly all eutherian lineages with an intact UCP1. While these transcriptional regulatory motifs are generally also maintained in species where this gene is pseudogenized, the loss or degeneration of key basal promoter (e.g. TATA box) and enhancer elements in other UCP1-lacking lineages make it unlikely that the enhancer region is pleiotropic (i.e. co-regulates additional genes). Among various eutherian lineages with intact UCP1, the elevated level sequence conservation in some putative regulatory elements but not others suggests the evolution of differential mechanisms that regulate UCP1 transcription.

Rapid diversifications of plants are primarily documented and studied in angiosperms, which are perceived as evolutionarily dynamic. Recent studies have, however, revealed that bryophytes have also undergone periods of rapid radiation. The speciose family Funariaceae, including the model taxon Physcomitrella patens, is one such lineage. Here, we infer relationships among major lineages within the Entosthodon-Physcomitrium complex from virtually complete organellar exomes (i.e., 123 genes) obtained through high throughput sequencing of genomic libraries enriched in these loci via targeted locus capture. Based on these extensive exonic data we (1) reconstructed a robust backbone topology of the Funariaceae, (2) confirmed the monophyly of Funaria and the polyphyly of Entosthodon, Physcomitrella, and Physcomitrium, and (3) argue for the occurrence of a rapid radiation within the Entosthodon-Physcomitrium complex that began 28 mya and gave rise more than half of the species diversity of the family. This diversification may have been triggered by a whole genome duplication and coincides with global Eocene cooling that continued through the Oligocene and Miocene. The Funariaceae join a growing list of bryophyte lineages whose history is marked by at least one burst of diversification, and our study thereby strengthens the view that bryophytes are evolutionarily dynamic lineages and that patterns and processes characterizing the evolution of angiosperms may be universal among land plants.

With their extraordinary diversity in sexual systems, flowering plants offer unparalleled opportunities to understand sex determination and to reveal generalities in the evolution of sex chromosomes. Comparative genetic mapping of related taxa with good phylogenetic resolution can delineate the extent of sex chromosome diversity within plant groups, and lead the way to understanding the evolutionary drivers of such diversity. The North American octoploid wild strawberries provide such an opportunity. We performed linkage mapping using targeted sequence capture for the subdioecious western Fragaria virginiana ssp. platypetala and compared the location of its sex-determining region (SDR) to those of two other (sub)dioecious species, the eastern subspecies, F. virginiana ssp. virginiana (whose SDR is at 0–5.5 Mb on chromosome VI of the B2 subgenome), and the sister species F. chiloensis (whose SDR is at 37 Mb on chromosome VI of the Av subgenome). Male sterility was dominant in F. virginiana ssp. platypetala and mapped to a chromosome also in homeologous group VI. Likewise, one major QTL for female fertility overlapped the male sterility region. However, the SDR mapped to a yet another subgenome (B1), and to a different location (13 Mb), but similar to the location inferred in one population of the naturally occurring hybrid between F. chiloensis and F. virginiana (F. x ananassa ssp. cuneifolia). Phylogenetic analysis of chromosomes across the octoploid taxa showed consistent subgenomic composition reflecting shared evolutionary history but also reinforced within-species variation in the SDR-carrying chromosome, suggesting either repeated evolution, or recent turnovers in SDR.

The phylogeny of eutherian mammals contains some of the most recalcitrant nodes in the tetrapod tree of life. We combined comprehensive taxon and character sampling to explore three of the most debated interordinal relationships among placental mammals. We performed in silico extraction of ultraconserved element (UCE) loci from 72 published genomes and in vitro enrichment and sequencing of UCEs from 28 additional mammals, resulting in alignments of 3,787 loci. We analyzed these data using concatenated and multispecies coalescent phylogenetic approaches, topological tests, and exploration of support among individual loci to identify the root of Eutheria and the sister groups of tree shrews (Scandentia) and horses (Perissodactyla). Individual loci provided weak, but often consistent support for topological hypotheses. Although many gene trees lacked accepted species-tree relationships, summary coalescent topologies were largely consistent with inferences from concatenation. At the root of Eutheria, we identified consistent support for a sister relationship between Xenarthra and Afrotheria (i.e., Atlantogenata). At the other nodes of interest, support was less consistent. We suggest Scandentia is the sister of Primatomorpha (Euarchonta), but we failed to reject a sister relationship between Scandentia and Glires. Similarly, we suggest Perissodactyla is sister to Cetartiodactyla (Euungulata), but a sister relationship between Perissodactyla and Chiroptera remains plausible.

We applied an interdisciplinary approach to investigate kinship patterns and funerary practices during the middle Neolithic. Genetic studies, radiocarbon dating, and taphonomic analyses were used to examine two grave clusters from Krusza Zamkowa, Poland. To reconstruct kinship and determine biological sex, we extracted DNA from bones and teeth, analyzed mitochondrial genomes and nuclear SNPs using the HID-Ion AmpliSeq™ Identity panel generated on Illumina and Ion Torrent platforms, respectively. We further dated the material (AMS 14C) and to exclude aquatic radiocarbon reservoir effects, measures of carbon and nitrogen stable isotopes for diet reconstruction were used. We found distinct mitochondrial genomes belonging to haplogroups U5b2a1a, K1c and H3d in the first grave cluster, and excluded maternal kin patterns among the three analyzed individuals. In the second grave cluster one individual belonged to K1a4. However, we could not affiliate the second individual to a certain haplogroup due to the fragmented state of the mitochondrial genome. Although the individuals from the second grave cluster differ at position 6643, we believe that more data is needed to fully resolve this issue. We retrieved between 26 and 77 autosomal SNPs from three of the individuals. Based on kinship estimations, taking into account the allelic dropout distribution, we could not exclude first degree kin relation between the two individuals from the second grave cluster. We could, however, exclude a first degree kinship between these two individuals and an individual from the first grave cluster. Presumably, not only biological kinship, but also social relations played an important role in the funerary practice during this time period. We further conclude that the HID-Ion AmpliSeq™ Identity Panel may prove useful for first degree kin relation studies for samples with good DNA preservation, and that mitochondrial genome capture enrichment is a powerful tool for excluding direct maternal relationship in ancient individuals.

The rapid rise of phenotypic and ecological diversity in independent lake-dwelling groups of cichlids is emblematic of the East African Great Lakes. In this study, we show that similar ecologically-based diversification has occurred in pike cichlids (Crenicichla) throughout the Uruguay River drainage of South America. We collected genomic data from nearly 500 ultraconserved element (UCEs) loci and >260,000 base pairs across 33 species, to obtain a phylogenetic hypothesis for the major species-groups and to evaluate the relationships and genetic structure among five closely-related, endemic, co-occurring species (the Uruguay River species flock; URSF). Additionally, we evaluated ecological divergence of the URSF based on body and lower pharyngeal jaw (LPJ) shape and gut contents. Across the genus, we recovered novel relationships among the species groups. We found strong support for the monophyly of the URSF; however, relationships among these species remain problematic, likely because of the rapid and recent evolution of this group. Clustered co-ancestry analysis recovered most species as well delimited genetic groups. The URSF species exhibit species-specific body and LPJ shapes associated with specialized trophic roles. Collectively, our results suggest that the URSF consists of incipient species that arose via ecological speciation associated with the exploration of novel trophic roles. This article is protected by copyright. All rights reserved.

Hybrid enrichment is an increasingly popular approach for obtaining hundreds of loci for phylogenetic analysis across many taxa quickly and cheaply. The genes targeted for sequencing are typically single-copy loci, which facilitate a more straightforward sequence assembly and homology assignment process. However, this approach limits the inclusion of most genes of functional interest, which often belong to multi-gene families. Here, we demonstrate the feasibility of including large gene families in hybrid enrichment protocols for phylogeny reconstruction and subsequent analyses of molecular evolution, using a new set of bait sequences designed for the “portullugo” (Caryophyllales), a moderately sized lineage of flowering plants (~ 2200 species) that includes the cacti and harbors many evolutionary transitions to C$$_{mathrm{4}}$$ and CAM photosynthesis. Including multi-gene families allowed us to simultaneously infer a robust phylogeny and construct a dense sampling of sequences for a major enzyme of C$$_{mathrm{4}}$$ and CAM photosynthesis, which revealed the accumulation of adaptive amino acid substitutions associated with C$$_{mathrm{4}}$$ and CAM origins in particular paralogs. Our final set of matrices for phylogenetic analyses included 75–218 loci across 74 taxa, with ~ 50% matrix completeness across data sets. Phylogenetic resolution was greatly improved across the tree, at both shallow and deep levels. Concatenation and coalescent-based approaches both resolve the sister lineage of the cacti with strong support: Anacampserotaceae $$+$$ Portulacaceae, two lineages of mostly diminutive succulent herbs of warm, arid regions. In spite of this congruence, BUCKy concordance analyses demonstrated strong and conflicting signals across gene trees. Our results add to the growing number of examples illustrating the complexity of phylogenetic signals in genomic-scale data.