The Cyclophyllidea is the most diverse order of tapeworms, encompassing species that infect all classes of terrestrial tetrapods including humans and domesticated animals. Available phylogenetic reconstructions based either on morphology or molecular data lack the resolution to allow scientists to either propose a solid taxonomy or infer evolutionary associations. Molecular markers available for the Cyclophyllidea mostly include ribosomal DNA and mitochondrial loci. In this study, we identified 3641 single-copy nuclear coding loci by comparing the genomes of Hymenolepis microstoma, Echinococcus granulosus and Taenia solium. We designed RNA baits based on the sequence of H. microstoma, and applied target enrichment and Illumina sequencing to test the utility of those baits to recover loci useful for phylogenetic analyses. We captured DNA from five species of tapeworms representing two families of cyclophyllideans. We obtained an average of 3284 (90%) of the targets from the test samples and then used captured sequences (2 181 361 bp in total; fragment size ranging from 301 to 6969 bp) to reconstruct a phylogeny for the five test species plus the three species for which genomic data are available. The results were consistent with the current consensus regarding cyclophyllidean relationships. To assess the potential for our method to yield informative genetic variation at intraspecific scales, we extracted 14 074 single nucleotide polymorphisms (SNPs) from alignments of four Arostrilepis macrocirrosa and two A. cooki and successfully inferred their relationships. The results showed that our target gene tools yield data sets that provide robust inferences at a range of taxonomic scales in the Cyclophyllidea.
Phylogenetics benefits from using a large number of putatively independent nuclear loci and their combination with other sources of information, such as the plastid and mitochondrial genomes. To facilitate the selection of orthologous low-copy nuclear (LCN) loci for phylogenetics in nonmodel organisms, we created an automated and interactive script to select hundreds of LCN loci by a comparison between transcriptome and genome skim data. We used our script to obtain LCN genes for southern African Oxalis (Oxalidaceae), a speciose plant lineage in the Greater Cape Floristic Region. This resulted in 1164 LCN genes greater than 600 bp. Using target enrichment combined with genome skimming (Hyb-Seq), we obtained on average 1141 LCN loci, nearly the whole plastid genome and the nrDNA cistron from 23 southern African Oxalis species. Despite a wide range of gene trees, the phylogeny based on the LCN genes was very robust, as retrieved through various gene and species tree reconstruction methods as well as concatenation. Cytonuclear discordance was strong. This indicates that organellar phylogenies alone are unlikely to represent the species tree and stresses the utility of Hyb-Seq in phylogenetics.
Ectoparasites frequently vector pathogens from often unknown pathogen reservoirs to both human and animal populations. Simultaneous identification of the ectoparasite species, the wildlife host that provided their most recent blood meal(s), and their pathogen load would greatly facilitate the understanding of the complex transmission dynamics of vector-borne diseases. Currently, these identifications are principally performed using multiple polymerase chain reaction (PCR) assays. We developed an assay (EctoBaits) based on in-solution capture paired with high-throughput sequencing to simultaneously identify ectoparasites, host blood meals and pathogens. We validated our in-solution capture results using double-blind PCR assays, morphology and collection data. The EctoBaits assay effectively and efficiently identifies ectoparasites, blood meals, and pathogens in a single capture experiment, allowing for high-resolution taxonomic identification while preserving the DNA sample for future analyses.
Acropyga ants are a widespread clade of small subterranean formicines that live in obligate symbiotic associations with root mealybugs. We generated a data set of 944 loci of ultraconserved elements (UCEs) to reconstruct the phylogeny of 41 representatives of 23 Acropyga species using both concatenation and species-tree approaches. We investigated the biogeographic history of the genus through divergence dating analyses and ancestral range reconstructions. We also explored the evolution of the Acropyga-mealybug mutualism using ancestral state reconstruction methods. We recovered a highly supported species phylogeny for Acropyga with both concatenation and species-tree analyses. The age for crown-group Acropyga is estimated to be around 30 Ma. The geographic origin of the genus remains uncertain, although phylogenetic affinities within the subfamily Formicinae point to a Paleotropical ancestor. Two main Acropyga lineages are recovered with mutually exclusive distributions in the Old World and New World. Within the Old World clade, a Palearctic and African lineage is suggested as sister to the remaining species. Ancestral state reconstructions indicate that Old World species have diversified mainly in close association with xenococcines from the genus Eumyrmococcus, although present-day associations also involve other mealybug genera. In contrast, New World Acropyga predominantly evolved with Neochavesia until a recent (10–15 Ma) switch to rhizoecid mealybug partners (genus Rhizoecus). The striking mandibular variation in Acropyga evolved most likely from a 5-toothed ancestor. Our results provide an initial evolutionary framework for extended investigations of potential co-evolutionary interactions between these ants and their mealybug partners.
Identification of genes underlying genomic signatures of natural selection is key to understanding adaptation to local conditions. We used targeted resequencing to identify SNP markers in 5321 candidate adaptive genes associated with known immunological, metabolic and growth functions in ovids and other ungulates. We selectively targeted 8161 exons in protein-coding and nearby 5′ and 3′ untranslated regions of chosen candidate genes. Targeted sequences were taken from bighorn sheep (Ovis canadensis) exon capture data and directly from the domestic sheep genome (Ovis aries v. 3; oviAri3). The bighorn sheep sequences used in the Dall’s sheep (Ovis dalli dalli) exon capture aligned to 2350 genes on the oviAri3 genome with an average of 2 exons each. We developed a microfluidic qPCR-based SNP chip to genotype 476 Dall’s sheep from locations across their range and test for patterns of selection. Using multiple corroborating approaches (lositan and bayescan), we detected 28 SNP loci potentially under selection. We additionally identified candidate loci significantly associated with latitude, longitude, precipitation and temperature, suggesting local environmental adaptation. The three methods demonstrated consistent support for natural selection on nine genes with immune and disease-regulating functions (e.g. Ovar-DRA, APC, BATF2, MAGEB18), cell regulation signalling pathways (e.g. KRIT1, PI3K, ORRC3), and respiratory health (CYSLTR1). Characterizing adaptive allele distributions from novel genetic techniques will facilitate investigation of the influence of environmental variation on local adaptation of a northern alpine ungulate throughout its range. This research demonstrated the utility of exon capture for gene-targeted SNP discovery and subsequent SNP chip genotyping using low-quality samples in a nonmodel species.
Here, we present a set of RNA-based probes for whole mitochondrial genome in-solution enrichment, targeting a diversity of mammalian mitogenomes. This probes set was designed from seven mammalian orders and tested to determine the utility for enriching degraded DNA. We generated 63 mitogenomes representing five orders and 22 genera of mammals that yielded varying coverage ranging from 0 to >5400X. Based on a threshold of 70% mitogenome recovery and at least 10× average coverage, 32 individuals or 51% of samples were considered successful. The estimated sequence divergence of samples from the probe sequences used to construct the array ranged up to nearly 20%. Sample type was more predictive of mitogenome recovery than sample age. The proportion of reads from each individual in multiplexed enrichments was highly skewed, with each pool having one sample that yielded a majority of the reads. Recovery across each mitochondrial gene varied with most samples exhibiting regions with gaps or ambiguous sites. We estimated the ability of the probes to capture mitogenomes from a diversity of mammalian taxa not included here by performing a clustering analysis of published sequences for 100 taxa representing most mammalian orders. Our study demonstrates that a general array can be cost and time effective when there is a need to screen a modest number of individuals from a variety of taxa. We also address the practical concerns for using such a tool, with regard to pooling samples, generating high quality mitogenomes and detail a pipeline to remove chimeric molecules.
Molecular ecologists seek to genotype hundreds to thousands of loci from hundreds to thousands of individuals at minimal cost per sample. Current methods, such as restriction-site-associated DNA sequencing (RADseq) and sequence capture, are constrained by costs associated with inefficient use of sequencing data and sample preparation. Here, we introduce RADcap, an approach that combines the major benefits of RADseq (low cost with specific start positions) with those of sequence capture (repeatable sequencing of specific loci) to significantly increase efficiency and reduce costs relative to current approaches. RADcap uses a new version of dual-digest RADseq (3RAD) to identify candidate SNP loci for capture bait design and subsequently uses custom sequence capture baits to consistently enrich candidate SNP loci across many individuals. We combined this approach with a new library preparation method for identifying and removing PCR duplicates from 3RAD libraries, which allows researchers to process RADseq data using traditional pipelines, and we tested the RADcap method by genotyping sets of 96–384 Wisteria plants. Our results demonstrate that our RADcap method: (i) methodologically reduces (to <5%) and allows computational removal of PCR duplicate reads from data, (ii) achieves 80–90% reads on target in 11 of 12 enrichments, (iii) returns consistent coverage (≥4×) across >90% of individuals at up to 99.8% of the targeted loci, (iv) produces consistently high occupancy matrices of genotypes across hundreds of individuals and (v) costs significantly less than current approaches.
Recent studies have advocated biomonitoring using DNA techniques. In this study, two high-throughput sequencing (HTS)-based methods were evaluated: amplicon metabarcoding of the cytochrome C oxidase subunit I (COI) mitochondrial gene and gene enrichment using MYbaits (targeting nine different genes including COI). The gene-enrichment method does not require PCR amplification and thus avoids biases associated with universal primers. Macroinvertebrate samples were collected from 12 New Zealand rivers. Macroinvertebrates were morphologically identified and enumerated, and their biomass determined. DNA was extracted from all macroinvertebrate samples and HTS undertaken using the illumina miseq platform. Macroinvertebrate communities were characterized from sequence data using either six genes (three of the original nine were not used) or just the COI gene in isolation. The gene-enrichment method (all genes) detected the highest number of taxa and obtained the strongest Spearman rank correlations between the number of sequence reads, abundance and biomass in 67% of the samples. Median detection rates across rare (<1% of the total abundance or biomass), moderately abundant (1–5%) and highly abundant (>5%) taxa were highest using the gene-enrichment method (all genes). Our data indicated primer biases occurred during amplicon metabarcoding with greater than 80% of sequence reads originating from one taxon in several samples. The accuracy and sensitivity of both HTS methods would be improved with more comprehensive reference sequence databases. The data from this study illustrate the challenges of using PCR amplification-based methods for biomonitoring and highlight the potential benefits of using approaches, such as gene enrichment, which circumvent the need for an initial PCR step.
Sample availability limits population genetics research on many species, especially taxa from regions with high diversity. However, many such species are well represented in museum collections assembled before the molecular era. Development of techniques to recover genetic data from these invaluable specimens will benefit biodiversity science. Using a mixture of freshly preserved and historical tissue samples, and a sequence capture probe set targeting >5000 loci, we produced high-confidence genotype calls on thousands of single nucleotide polymorphisms (SNPs) in each of five South-East Asian bird species and their close relatives (N = 27–43). On average, 66.2% of the reads mapped to the pseudo-reference genome of each species. Of these mapped reads, an average of 52.7% was identified as PCR or optical duplicates. We achieved deeper effective sequencing for historical samples (122.7×) compared to modern samples (23.5×). The number of nucleotide sites with at least 8× sequencing depth was high, with averages ranging from 0.89 × 106 bp (Arachnothera, modern samples) to 1.98 × 106 bp (Stachyris, modern samples). Linear regression revealed that the amount of sequence data obtained from each historical sample (represented by per cent of the pseudo-reference genome recovered with ≥8× sequencing depth) was positively and significantly (P ≤ 0.013) related to how recently the sample was collected. We observed characteristic post-mortem damage in the DNA of historical samples. However, we were able to reduce the error rate significantly by truncating ends of reads during read mapping (local alignment) and conducting stringent SNP and genotype filtering.
Teasing apart neutral and adaptive genomic processes and identifying loci that are targets of selection can be difficult, particularly for nonmodel species that lack a reference genome. However, identifying such loci and the factors driving selection have the potential to greatly assist conservation and restoration practices, especially for the management of species in the face of contemporary and future climate change. Here, we focus on assessing adaptive genomic variation within a nonmodel plant species, the narrow-leaf hopbush (Dodonaea viscosa ssp. angustissima), commonly used for restoration in Australia. We used a hybrid-capture target enrichment approach to selectively sequence 970 genes across 17 populations along a latitudinal gradient from 30°S to 36°S. We analysed 8462 single-nucleotide polymorphisms (SNPs) for FST outliers as well as associations with environmental variables. Using three different methods, we found 55 SNPs with significant correlations to temperature and water availability, and 38 SNPs to elevation. Genes containing SNPs identified as under environmental selection were diverse, including aquaporin and abscisic acid genes, as well as genes with ontologies relating to responses to environmental stressors such as water deprivation and salt stress. Redundancy analysis demonstrated that only a small proportion of the total genetic variance was explained by environmental variables. We demonstrate that selection has led to clines in allele frequencies in a number of functional genes, including those linked to leaf shape and stomatal variation, which have been previously observed to vary along the sampled environmental cline. Using our approach, gene regions subject to environmental selection can be readily identified for nonmodel organisms.
Ann Arbor, MI 48103
(d/b/a Daicel Arbor Biosciences)
All Rights Reserved.