Spatial isolation is one of the main drivers of allopatric speciation, but the extent to which spatially-segregated populations accumulate genetic differences relevant to speciation is not always clear. We used data from ultraconserved elements (UCEs) and whole mitochondrial genomes (i.e., mitogenomes) to explore genetic variation among allopatric populations of the weakly electric fish Sternopygus dariensis across the Isthmus of Panama. We found strong genetic divergence between eastern and western populations of S. dariensis. Over 77% of the UCE loci examined were differentially fixed between populations, and these loci appear to be distributed across the species’ genome. Population divergence occurred within the last 1.1 million years, perhaps due to global glaciation oscillations during the Pleistocene. Our results are consistent with a pattern of genetic differentiation under strict geographic isolation, and suggest the presence of incipient allopatric species within S. dariensis. Genetic divergence in S. dariensis likely occurred in situ, long after the closure of the Isthmus of Panama. Our study highlights the contribution of spatial isolation and vicariance to promoting rapid diversification in Neotropical freshwater fishes. The study of spatially-segregated populations within the Isthmus of Panama could reveal how genetic differences accumulate as allopatric speciation proceeds.

Abstract Meiotic crossovers (COs) play a critical role in generating genetic variation and maintaining faithful segregation of homologous chromosomes during meiosis. We develop a haplotype-specific fluorescence in situ hybridization (FISH) technique that allows visualization of COs directly on metaphase chromosomes. Oligonucleotides (oligos) specific to chromosome 10 of maize inbreds B73 and Mo17, respectively, are synthesized and labeled as FISH probes. The parental and recombinant chromosome 10 in B73 x Mo17 F 1 hybrids and F 2 progenies can be unambiguously identified by haplotype-specific FISH. Analysis of 58 F 2 plants reveals lack of COs in the entire proximal half of chromosome 10. However, we detect COs located in regions very close to the centromere in recombinant inbred lines from an intermated B73 x Mo17 population, suggesting effective accumulation of COs in recombination-suppressed chromosomal regions through intermating and the potential to generate favorable allelic combinations of genes residing in these regions.

The great auk was once abundant and distributed across the North Atlantic. It is now extinct, having been heavily exploited for its eggs, meat, and feathers. We investigated the impact of human hunting on its demise by integrating genetic data, GPS-based ocean current data, and analyses of population viability. We sequenced complete mitochondrial genomes of 41 individuals from across the species’ geographic range and reconstructed population structure and population dynamics throughout the Holocene. Taken together, our data do not provide any evidence that great auks were at risk of extinction prior to the onset of intensive human hunting in the early 16th century. In addition, our population viability analyses reveal that even if the great auk had not been under threat by environmental change, human hunting alone could have been sufficient to cause its extinction. Our results emphasise the vulnerability of even abundant and widespread species to intense and localised exploitation.

Oligo painting FISH was established to identify all chromosomes in banana (Musa spp.) and to anchor pseudomolecules of reference genome sequence of Musa acuminata spp. malaccensis “DH Pahang” to individual chromosomes in situ. A total of 19 chromosome/chromosome-arm specific oligo painting probes were developed and were shown to be suitable for molecular cytogenetic studies in genus Musa. For the first time, molecular karyotypes of diploid M. acuminata spp. malaccensis (A genome), M. balbisiana (B genome), and M. schizocarpa (S genome) from the Eumusa section of Musa, which contributed to the evolution of edible banana cultivars, were established. This was achieved after a combined use of oligo painting probes and a set of previously developed banana cytogenetic markers. The density of oligo painting probes was sufficient to study chromosomal rearrangements on mitotic as well as on meiotic pachytene chromosomes. This advance will enable comparative FISH mapping and identification of chromosomal translocations which accompanied genome evolution and speciation in the family Musaceae.