Evidence of intentional dental modification practices has been found throughout Mesoamerica dating from the Early Preclassic period to the conquest. The recovery of 102 modified teeth from Midnight Terror Cave (MTC) provides a sufficiently large sample to critically examine current explanations of intentional dental modification. Paleogenomic analysis was employed in order to test hypotheses which link intentional dental modification to sex and kinship. DNA was extracted and genomic sequencing libraries were made for 27 teeth. Results show the presence of both sexes, indicating that the practice is not sex linked. The mitochondrial genome data detects a possible link between intentional dental modification and style.

HyunJung Kim, Ralph Vin B. Imatong, Thomas H. Tai. Plant Breed. Biotech. 2020;8:19-27. https://doi.org/10.9787/PBB.2020.8.1.19

Abstract. Marker selection has emerged as an important component of phylogenomic study design due to rising concerns of the effects of gene tree estimation err

Narrow-mouthed frogs (Anura: Microhylidae) are globally distributed and molecular data suggest the rapid evolution of multiple subfamilies shortly after their origin. Despite recent progress, several subfamilial relationships remain unexplored using phylogenomic data. We analysed 1,796 nuclear ultraconserved elements, a total matrix of 400,664 nucleotides, from representatives of most microhylid subfamilies. Summary method species-tree and maximum likelihood analyses unambiguously supported Hoplophryninae, as the earliest diverging microhylid and confirm Chaperininae as a junior synonym of Microhylinae. Given the emerging consensus that subfamilies from mainland Africa diverged early, microhylids have likely occupied the continent for more than 66 million years.

The family Trichomycteridae is one of the most diverse groups of freshwater catfishes in South and Central America with eight subfamilies, 41 genera and more than 300 valid species. Its members are widely distributed throughout South America, reaching Costa Rica in Central America and are recognized by extraordinary anatomical specializations and trophic diversity. In order to assess the phylogenetic relationships of Trichomycteridae, we collected sequence data from ultraconserved elements (UCEs) of the genome from 141 specimens of Trichomycteridae and 12 outgroup species. We used a concatenated matrix to assess the phylogenetic relationships by Bayesian inference (BI) and maximum likelihood (ML) searches and a coalescent analysis of species trees. The results show a highly resolved phylogeny with broad agreement among the three distinct analyses, providing overwhelming support for the monophyletic status of subfamily Trichomycterinae including Ituglanis and Scleronema. Previous relationship hypotheses among subfamilies are strongly corroborated, such as the sister relationship between Copionodontinae and Trichogeninae forming a sister clade to the remaining trichomycterids and the intrafamilial clade TSVSG (Tridentinae-Stegophilinae-Vandelliinae-Sarcoglanidinae-Glanapteryginae). Monophyly of Glanapteryginae and Sarcoglanidinae was not supported and the enigmatic Potamoglanis is placed outside Tridentinae.

Strategies to cure HIV-infected patients by virus-targeting drugs have failed to date. We identified a HIV-1-seropositive woman who spontaneously suppressed HIV replication and had normal CD4-cell counts, no HIV-disease, no replication-competent virus and no cell HIV DNA detected with a routine assay. We suspected that dramatic HIV DNA degradation occurred post-infection. We performed multiple nested-PCRs followed by Sanger sequencing and applied a multiplex-PCR approach. Furthermore, we implemented a new technique based on two hybridization steps on beads prior to next-generation sequencing that removed human DNA then retrieved integrated HIV sequences with HIV-specific probes. We assembled ≈45% of the HIV genome and further analyzed the G-to-A mutations putatively generated by cellular APOBEC3 enzymes that can change tryptophan codons into stop codons. We found more G-to-A mutations in the HIV DNA from the woman than in that of her transmitting partner. Moreover, 74% of the tryptophan codons were changed to stop codons (25%) or were deleted as a possible consequence of gene inactivation. Finally, we found that this woman’s cells remained HIV-susceptible in vitro. Our findings show that she does not exhibit innate HIV-resistance but may have been cured of it by extrinsic factors, a plausible candidate for which is the gut microbiota.

The genera Empis Linneus, 1758 and Rhamphomyia Meigen, 1822 (Empidoidea, Empididae Latreille, 1809) are two large genera of flies commonly named dagger flies. They are widely distributed in the world with most species described from the Palearctic Region. Empis comprises about 810 described species and Rhamphomyia comprises about 610 described species, together they represent one third of the known species diversity in Empididae. Two recent studies on the phylogeny of the two genera using Sanger sequencing on a few genetic markers, did not support monophyly of them. In this study high throughput sequencing of target enriched molecular data of ultraconserved elements or UCEs was used to investigate the phylogenetic relationships of included representatives of the genera. This method has proven useful on old and dry museum specimens with high amounts of degraded DNA, which was also tested herein. For this purpose, a commercially synthesized bait kit has previously been developed for Diptera which this study was the first one to test. Three out of nine old and dry museum specimens were successfully sequenced, one with an age of at least 154 years. Higher DNA concentration yielded a greater number of reads. Analyses conducted in the study confirmed that both Empis and Rhamphomyia are non-monophyletic.