Cas13 has demonstrated unique and broad utility in RNA editing, nucleic acid detection, and disease diagnosis; however, a constantly active Cas enzyme may induce unwanted effects. Bacteriophage- or prophage-region-encoded anti-CRISPR (acr) gene molecules provide the potential to control targeting specificity and potency to allow for optimal RNA editing and nucleic acid detection by spatiotemporally modulating endonuclease activities. Using integrated approaches to screen acrVI candidates and evaluate their effects on Cas13 function, we discovered a series of acrVIA1-7 genes that block the activities of Cas13a. These VI-A CRISPR inhibitors substantially attenuate RNA targeting and editing by Cas13a in human cells. Strikingly, type VI-A anti-CRISPRs (AcrVIAs) also significantly muffle the single-nucleic-acid editing ability of the dCas13a RNA-editing system. Mechanistically, AcrVIA1, -4, -5, and -6 bind LwaCas13a, while AcrVIA2 and -3 can only bind the LwaCas13-crRNA (CRISPR RNA) complex. These identified acr molecules may enable precise RNA editing in Cas13-based application and study of phage-bacterium interaction.

The systematics of sitticine jumping spiders is reviewed, with a focus on the Palearctic and Nearctic regions, in order to revise their generic classification, clarify the species of one region (Canada), and study their chromosomes. A genome-wide molecular phylogeny of 23 sitticine species, using more than 700 loci from the arachnid Ultra-Conserved Element (UCE) probeset, confirms the Neotropical origins of sitticines, whose basal divergence separates the new subtribe Aillutticina (a group of five Neotropical genera) from the subtribe Sitticina (five genera of Eurasia and the Americas). The phylogeny shows that most Eurasian sitticines form a relatively recent and rapid radiation, which we unite into the genus Attulus Simon, 1868, consisting of the subgenera Sitticus Simon, 1901 (seven described species), Attulus (41 described species), and Sittilong Prószyński, 2017 (one species). Five species of Attulus occur natively in North America, presumably through dispersals back from the Eurasian radiation, but an additional three species were more recently introduced from Eurasia. Attus palustris Peckham & Peckham, 1883 is considered to be a full synonym of Euophrys floricola C. L. Koch, 1837 (not a distinct subspecies). Attus sylvestris Emerton, 1891 is removed from synonymy and recognized as a senior synonym of Sitticus magnus Chamberlin & Ivie, 1944. Thus, the five native Attulus in North America are Attulus floricola , A. sylvestris , A. cutleri , A. striatus , and A. finschi . The other sitticines of Canada and the U.S.A. are placed in separate genera, all of which arose from a Neotropical radiation including Jollas Simon, 1901 and Tomis F.O.Pickard-Cambridge, 1901: (1) Attinella Banks, 1905 ( A. dorsata , A. concolor , A. juniperi ), (2) Tomis ( T. welchi ), and (3) Sittisax Prószyński, 2017 ( S. ranieri ). All Neotropical and Caribbean “ Sitticus ” are transferred to either Jollas (12 species total) or Tomis (14 species). Attinella (three species) and Tomis are both removed from synonymy with Sitticus ; the synonymy of Sitticus cabellensis Prószyński, 1971 with Pseudattulus kratochvili Caporiacco, 1947 is restored; Pseudattulus Caporiacco, 1947 is synonymized with Tomis . Six generic names are newly synonymized with Attulus and one with Attinella . Two Neotropical species are described as new, Jollas cupreus sp. nov. and Tomis manabita sp. nov. Forty-six new combinations are established and three are restored. Three species synonymies are restored, one is new, and two are rejected. Across this diversity of species is a striking diversification of chromosome complements, with X-autosome fusions occurring at least four times to produce neo-Y sex chromosome systems (X 1 X 2 Y and X 1 X 2 X 3 Y), some of which ( Sittisax ranieri and S. saxicola ) are sufficiently derived as to no longer preserve the simple traces of ancestral X material. The correlated distribution of neo-Y and a base autosome number of 28 suggests that neo-Y origins occurred preferentially in lineages with the presence of an extra pair of autosomes.

The aquaculture of yellowtail kingfish (Seriola lalandi) has expanded around the globe, including China. Genetic resource of Chinese S. lalandi urgently needs to be assessed for improving production. Here, we collected wild S. lalandi samples from the Bohai Sea, China and evaluated its genetic diversity based on 17,690 nuclear loci. A population from the Southern Ocean, Australia was used for comparison. The analyses showed that the Chinese and Australian S. lalandi formed two completely distinct clusters and there was no genetic introgression from the Australian S. lalandi into the Chinese S. lalandi population. The genetic diversity is slightly lower, but comparable in Chinese versus Australian yellowtail kingfish (Chinese population, expected heterozygosity: 0.19, observed heterozygosity: 0.19, nucleotide diversity: 0.19 ± 0.09; Australian population, expected heterozygosity: 0.23, observed heterozygosity: 0.22, nucleotide diversity: 0.22 ± 0.11). Overall, our results indicated that Chinese S. lalandi could be a potential subject for genetic breeding programs. We also investigated morphological characters and developed molecular markers for population identification. Comparison of meristic characters between the Chinese population and the Australian population revealed that main shape difference were in the number of dorsal spines, dorsal fin rays and the number of upper gill rakers. Geometric morphology based on eight landmarks also revealed significant difference between the two populations including the distance between the tip of snout to origin of pelvic fin and the distance between the tip of snout to origin of pectoral fin. These morphological characters can be used for easy identification of the Chinese S. lalandi.

Phylogenomic approaches now generate hundreds of loci representative of the whole genome that can be used for phylogenetic analyses. The South American lizard genus Liolaemus is the most species-rich vertebrate radiation from temperate zones (more than 265 described species), yet most higher-level phylogenetic relationships within Liolaemus remain poorly resolved. In this study, we used 584 nuclear loci collected using targeted sequenced capture to estimate the phylogenetic relationships among 26 species representing the two subgenera within Liolaemus (Eulaemus + Liolaemus), and all major groups within Eulaemus. Previous molecular and morphological-based phylogenetic analyses of Eulaemus based on a limited number of characters resolved few higher-level relationships, although one point of agreement is that the early divergence within Eulaemus corresponds to the lineomaculatus section, followed by the diversification of eight main clades that are strongly supported and recognized. Liolaemus probably experienced relatively rapid divergences during parts of its evolutionary history, and a phylogenomic approach was used to resolve the relationships among the major groups. The new analyses presented here support the division of Liolaemus into two subgenera, and resolve relationships among many of the major clades of Eulaemus with strong support. A Bayesian divergence dating analysis using 44 protein-coding genes provides an estimation of the split of the two Liolaemus subgenera of approximately 19,7 ma (95% HPD = 16,94 – 23,04), while diversification within Eulaemus started at 15,05 ma (95% HPD = 12,94 – 17,59) among the L. lineomaculatus and the L. montanus series by Mid Miocene. A novel phylogenetic network analyses for SNP data identified two hybridizing edges among different groups of Eulaemus at different points in time. Having a solid phylogenetic hypothesis of the main Eulaemus clades opens new opportunities to test a variety of macroevolutionary questions for this unique radiation.

Abstract Drosophila males have evolved a unique system of chromosome segregation in meiosis that lacks recombination. Chromosomes pair at selected sequences suggesting that early steps of meiosis may also differ in this organism… Diploid germline cells must undergo two consecutive meiotic divisions before differentiating as haploid sex cells. During meiosis I, homologs pair and remain conjoined until segregation at anaphase. Drosophila melanogaster spermatocytes are unique in that the canonical events of meiosis I including synaptonemal complex formation, double-strand DNA breaks, and chiasmata are absent. Sex chromosomes pair at intergenic spacer sequences within the ribosomal DNA (rDNA). Autosomes pair at numerous euchromatic homologies, but not at heterochromatin, suggesting that pairing may be limited to specific sequences. However, previous work generated from genetic segregation assays or observations of late prophase I/prometaphase I chromosome associations fail to differentiate pairing from maintenance of pairing (conjunction). Here, we separately examined the capability of X euchromatin to pair and conjoin using an rDNA-deficient X and a series of Dp(1;Y) chromosomes. Genetic assays showed that duplicated X euchromatin can substitute for endogenous rDNA pairing sites. Segregation was not proportional to homology length, and pairing could be mapped to nonoverlapping sequences within a single Dp(1;Y). Using fluorescence in situ hybridization to early prophase I spermatocytes, we showed that pairing occurred with high fidelity at all homologies tested. Pairing was unaffected by the presence of X rDNA, nor could it be explained by rDNA magnification. By comparing genetic and cytological data, we determined that centromere proximal pairings were best at segregation. Segregation was dependent on the conjunction protein Stromalin in Meiosis, while the autosomal-specific Teflon was dispensable. Overall, our results suggest that pairing may occur at all homologies, but there may be sequence or positional requirements for conjunction.