Human populations have been shaped by catastrophes that may have left long-lasting signatures in their genomes. One notable example is the second plague pandemic that entered Europe in ca. 1,347 CE and repeatedly returned for over 300 years, with typical village and town mortality estimated at 10%–40%.1 It is assumed that this high mortality affected the gene pools of these populations. First, local population crashes reduced genetic diversity. Second, a change in frequency is expected for sequence variants that may have affected survival or susceptibility to the etiologic agent (Yersinia pestis).2 Third, mass mortality might alter the local gene pools through its impact on subsequent migration patterns. We explored these factors using the Norwegian city of Trondheim as a model, by sequencing 54 genomes spanning three time periods: (1) prior to the plague striking Trondheim in 1,349 CE, (2) the 17th–19th century, and (3) the present. We find that the pandemic period shaped the gene pool by reducing long distance immigration, in particular from the British Isles, and inducing a bottleneck that reduced genetic diversity. Although we also observe an excess of large FST values at multiple loci in the genome, these are shaped by reference biases introduced by mapping our relatively low genome coverage degraded DNA to the reference genome. This implies that attempts to detect selection using ancient DNA (aDNA) datasets that vary by read length and depth of sequencing coverage may be particularly challenging until methods have been developed to account for the impact of differential reference bias on test statistics.

‘Breadfruit’ is a common tree species in Taiwan. In the indigenous Austronesian Amis culture of eastern Taiwan, ‘breadfruit’ is known as Pacilo , and its fruits are consumed as food. On Lanyu (Botel Tobago) where the indigenous Yami people live, ‘breadfruit’ is called Cipoho and used for constructing houses and plank-boats. Elsewhere in Taiwan, ‘breadfruit’ is also a common ornamental tree. As an essential component of traditional Yami culture, Cipoho has long been assumed to have been transported from the Batanes Island of the Philippines to Lanyu. As such, it represents a commensal species that potentially can be used to test the hypothesis of the northward Austronesian migration ‘into’ Taiwan. However, recent phylogenomic studies using target enrichment show that Taiwanese ‘breadfruit’ might not be the same as the Pacific breadfruit ( Artocarpus altilis ), which was domesticated in Oceania and widely cultivated throughout the tropics. To resolve persistent misidentification of this culturally and economically important tree species of Taiwan, we sampled 36 trees of Taiwanese Artocarpus and used the Moraceae probe set to enrich 529 nuclear genes. Along with 28 archived Artocarpus sequence datasets (representing a dozen taxa from all subgenera), phylogenomic analyses showed that all Taiwanese ‘breadfruit’ samples, together with a cultivated ornamental tree from Hawaii, form a fully supported clade within the A . treculianus complex, which is composed only of endemic Philippine species. Morphologically, the Taiwanese ‘breadfruit’ matches the characters of A . treculianus . Within the Taiwanese samples of A . treculianus , Amis samples form a fully supported clade derived from within the paraphyletic grade composed of Yami samples, suggesting a Lanyu origin. Results of our target enrichment phylogenomics are consistent with the scenario that Cipoho was transported northward from the Philippines to Lanyu by Yami ancestors, though the possibility that A . treculianus is native to Lanyu cannot be ruled out completely.

Non-coding repetitive DNA (repeatome) is an active part of the nuclear genome, involved in its structure, evolution and function. It is dominated by transposable elements (TEs) and satellite DNA and is prone to the most rapid changes over time. The TEs activity presumably causes the global genome reorganization and may play an adaptive or regulatory role in response to environmental challenges. This assumption is applied here for the first time to plants from the Cape Floristic hotspot to determine whether changes in repetitive DNA are related to responses to a harsh, but extremely species-rich environment. The genus Pteronia (Asteraceae) serves as a suitable model group because it shows considerable variation in genome size at the diploid level and has high and nearly equal levels of endemism in the two main Cape biomes, Fynbos and Succulent Karoo. First, we constructed a phylogeny based on multiple low-copy genes that served as a phylogenetic framework for detecting quantitative and qualitative changes in the repeatome. Second, we performed a comparative analysis of the environments of two groups of Pteronia differing in their TEs bursts. Our results suggest that the environmental transition from the Succulent Karoo to the Fynbos is accompanied by TEs burst, which is likely also driving phylogenetic divergence. We thus hypothesize that analysis of rapidly evolving repeatome could serve as an important proxy for determining the molecular basis of lineage divergence in rapidly radiating groups.

Abstract Detection of SARS-CoV-2 viral load in wastewater has been highly informative in estimating the approximate number of infected individuals in the surrounding communities. Recent developments in wastewater monitoring to determine community prevalence of COVID-19 further extends into identifying SARS-CoV-2 variants, including those being monitored for having enhanced transmissibility. We sequenced genomic RNA derived from wastewater to determine the variants of coronaviruses circulating in the communities. Wastewater samples were collected from Truckee Meadows Water Reclamation Facility (TMWRF) from November 2020 to June 2021. SARS-CoV-2 variants resulting from wastewater were compared with the variants detected in infected individuals’ clinical specimens (nasal/nasopharyngeal swabs) during the same period and found conclusively in agreement. Therefore, wastewater monitoring for SARS-CoV-2 variants in the community is a feasible strategy as a complementary tool to clinical specimen testing in the latter’s absence.

Domestic pigs (Sus scrofa) were first transported to Polynesia through a series of long-distance voyages ultimately linked to the Neolithic expansion of Austronesian-speaking people out of Asia. The descendants of the founding pigs belong to a rare mtDNA group referred to as the “Pacific Clade” that may have originated in peninsular or island Southeast Asia. We report the first whole genome mtDNA from domestic pigs from any of the remote islands of the Pacific. In this brief report, we describe the close link we discovered between ancient mtDNA from archaeological specimens from across Polynesia and from that of modern pigs in northern peninsular Southeast Asia, specifically southern China’s Yunnan Province. More complete mtDNA coverage in commensal animals is necessary to improve our picture of the settlement of Polynesia (ca. 2800–700 years before the present) and specify the route, or routes, that pigs took from northern peninsular Southeast Asia.

Abstract Human herpes simplex virus 2 (HSV-2) is a ubiquitous, slowly evolving DNA virus. HSV-2 has two primary lineages, one found in West and Central Africa and the other found worldwide. Competing hypotheses have been proposed to explain how HSV-2 migrated out-of-Africa (i)HSV-2 followed human migration out-of-Africa 50-100 thousand years ago, or (ii)HSV-2 migrated via the trans-Atlantic slave trade 150-500 years ago. Limited geographic sampling and lack of molecular clock signal has precluded robust comparison. Here, we analyze newly sequenced HSV-2 genomes from Africa to resolve geography and timing of divergence events within HSV-2. Phylogeographic analysis consistently places the ancestor of worldwide dispersal in East Africa, though molecular clock is too slow to be detected using available data. Rates 4.2 × 10 −8 −5.6 × 10 −8 substitutions/site/year, consistent with previous age estimates, suggest a worldwide dispersal 22-29 thousand years ago. Thus, HSV-2 likely migrated with humans from East Africa and dispersed after the Last Glacial Maximum.

Premise Reconciling the use of taxonomy to partition morphological variation and describe genetic divergence within and among closely related species is a persistent challenge in phylogenetics. We reconstructed phylogenetic relationships among Cedrela odorata (Meliaceae) and five closely allied species to test the genetic basis for the current model of species delimitation in this economically valuable and threatened genus.