Aim The Lesser Sunda Islands are situated between the Sunda and Sahul Shelves, with a linear arrangement that has functioned as a two-way filter for taxa dispersing between the Asian and Australo-Papuan biogeographical realms. Distributional patterns of many terrestrial vertebrates suggest a stepping-stone model of island colonization. Here we investigate the timing and sequence of island colonization in Asian-origin fanged frogs from the volcanic Sunda Arc islands with the goal of testing the stepping-stone model of island colonization. Location The Indonesian islands of Java, Lombok, Sumbawa, Flores and Lembata. Taxon Limnonectes dammermani and L. kadarsani (Family: Dicroglossidae) Methods Mitochondrial DNA was sequenced from 153 frogs to identify major lineages and to select samples for an exon-capture experiment. We designed probes to capture sequence data from 974 exonic loci (1,235,981 bp) from 48 frogs including the outgroup species, L. microdiscus. The resulting data were analysed using phylogenetic, population genetic and biogeographical model testing methods. Results The mtDNA phylogeny finds L. kadarsani paraphyletic with respect to L. dammermani, with a pectinate topology consistent with the stepping-stone model. Phylogenomic analyses of 974 exons recovered the two species as monophyletic sister taxa that diverged 7.6 Ma with no detectable contemporary gene flow, suggesting introgression of the L. dammermani mitochondrion into L. kadarsani on Lombok resulting from an isolated ancient hybridization event 4 Ma. Within L. kadarsani, the Lombok lineage diverged first while the Sumbawa and Lembata lineages are nested within a Flores assemblage composed of two parapatrically distributed lineages meeting in central Flores. Biogeographical model comparison found strict stepping-stone dispersal to be less likely than models involving leap-frog dispersal events. Main conclusions These results suggest that the currently accepted stepping-stone model of island colonization might not best explain the current patterns of diversity in the archipelago. The high degree of genetic structure, large divergence times, and absent or low levels of migration between lineages suggests that L. kadarsani represents five distinct species.
Indochina and Sundaland are biologically diverse, interconnected regions of Southeast Asia with complex geographic histories. Few studies have examined phylogeography of bird species that span the two regions because of inadequate population sampling. To determine how geographic barriers/events and disparate dispersal potential have influenced the population structure, gene flow, and demographics of species that occupy the entire area, we studied five largely codistributed rainforest bird species: Arachnothera longirostra, Irena puella, Brachypodius atriceps, Niltava grandis, and Stachyris nigriceps. We accomplished relatively thorough sampling and data collection by sequencing ultraconserved elements (UCEs) using DNA extracted from modern and older (historical) specimens. We obtained a genome-wide set of 753–4,501 variable loci and 3,919–18,472 single nucleotide polymorphisms. The formation of major within-species lineages occurred within a similar span of time (0.5–1.5 mya). Major patterns in population genetic structure are largely consistent with the dispersal potential and habitat requirements of the study species. A population break across the Isthmus of Kra was shared only by the two hill/submontane insectivores (N. grandis and S. nigriceps). Across Sundaland, there is little structure in B. atriceps, which is a eurytopic and partially frugivorous species that often utilizes forest edges. Two other eurytopic species, A. longirostra and I. puella, possess highly divergent populations in peripheral Sunda Islands (Java and/or Palawan) and India. These species probably possess intermediate dispersal abilities that allowed them to colonize new areas, and then remained largely isolated subsequently. We also observed an east–west break in Indochina that was shared by B. atriceps and S. nigriceps, species with very different habitat requirements and dispersal potential. By analyzing high-throughput DNA data, our study provides an unprecedented comparative perspective on the process of avian population divergence across Southeast Asia, a process that is determined by geography, species characteristics, and the stochastic nature of dispersal and vicariance events.
Premise of the Study This investigation establishes the first DNA-sequence-based phylogenetic hypothesis of species relationships in the coca family (Erythroxylaceae) and presents its implications for the intrageneric taxonomy and neotropical biogeography of Erythroxylum. We also identify the closest wild relatives and evolutionary relationships of the cultivated coca taxa. Methods We focused our phylogenomic inference on the largest taxonomic section in the genus Erythroxylum (Archerythroxylum O.E.Schulz) using concatenation and gene tree reconciliation methods from hybridization-based target capture of 427 genes. Key Results We show that neotropical Erythroxylum are monophyletic within the paleotropical lineages, yet Archerythroxylum and all of the other taxonomic sections from which we sampled multiple species lack monophyly. We mapped phytogeographic states onto the tree and found some concordance between these regions and clades. The wild species E. gracilipes and E. cataractarum are most closely related to the cultivated E. coca and E. novogranatense, but relationships within this “coca” clade remain equivocal. Conclusions Our results point to the difficulty of morphology-based intrageneric classification in this clade and highlight the importance of integrative taxonomy in future systematic revisions. We can confidently identify E. gracilipes and E. cataractarum as the closest wild relatives of the coca taxa, but understanding the domestication history of this crop will require more thorough phylogeographic analysis.
Next-generation sequencing technologies (NGS) allow systematists to amass a wealth of genomic data from non-model species for phylogenetic resolution at various temporal scales. However, phylogenetic inference for many lineages dominated by non-model species has not yet benefited from NGS, which can complement Sanger sequencing studies. One such lineage, whose phylogenetic relationships remain uncertain, is the diverse, agriculturally important and charismatic Coreoidea (Hemiptera: Heteroptera). Given the lack of consensus on higher-level relationships and the importance of a robust phylogeny for evolutionary hypothesis testing, we use a large data set comprised of hundreds of ultraconserved element (UCE) loci to infer the phylogeny of Coreoidea (excluding Stenocephalidae and Hyocephalidae), with emphasis on the families Coreidae and Alydidae. We generated three data sets by including alignments that contained loci sampled for at least 50%, 60%, or 70% of the total taxa, and inferred phylogeny using maximum likelihood and summary coalescent methods. Twenty-six external morphological features used in relatively comprehensive phylogenetic analyses of coreoids were also re-evaluated within our molecular phylogenetic framework. We recovered 439–970 loci per species (16%–36% of loci targeted) and combined this with previously generated UCE data for 12 taxa. All data sets, regardless of analytical approach, yielded topologically similar and strongly supported trees, with the exception of outgroup relationships and the position of Hydarinae. We recovered a monophyletic Coreoidea, with Rhopalidae highly supported as the sister group to Alydidae + Coreidae. Neither Alydidae nor Coreidae were monophyletic; the coreid subfamilies Hydarinae and Pseudophloeinae were recovered as more closely related to Alydidae than to other coreid subfamilies. Coreinae were paraphyletic with respect to Meropachyinae. Most morphological traits were homoplastic with several clades defined by few, if any, synapomorphies. Our results demonstrate the utility of phylogenomic approaches in generating robust hypotheses for taxa with long-standing phylogenetic problems and highlight that novel insights may come from such approaches.
Genomic tools are lacking for invasive and native populations of sea lamprey (Petromyzon marinus). Our objective was to discover single nucleotide polymorphism (SNP) loci to conduct pedigree analyses to quantify reproductive contributions of adult sea lampreys and dispersion of sibling larval sea lampreys of different ages in Great Lakes tributaries. Additional applications of data were explored using additional geographically expansive samples. We used restriction site-associated DNA sequencing (RAD-Seq) to discover genetic variation in Duffins Creek (DC), Ontario, Canada, and the St. Clair River (SCR), Michigan, USA. We subsequently developed RAD capture baits to genotype 3,446 RAD loci that contained 11,970 SNPs. Based on RAD capture assays, estimates of variance in SNP allele frequency among five Great Lakes tributary populations (mean FST 0.008; range 0.00–0.018) were concordant with previous microsatellite-based studies; however, outlier loci were identified that contributed substantially to spatial population genetic structure. At finer scales within streams, simulations indicated that accuracy in genetic pedigree reconstruction was high when 200 or 500 independent loci were used, even in situations of high spawner abundance (e.g., 1,000 adults). Based on empirical collections of larval sea lamprey genotypes, we found that age-1 and age-2 families of full and half-siblings were widely but nonrandomly distributed within stream reaches sampled. Using the genomic scale set of SNP loci developed in this study, biologists can rapidly genotype sea lamprey in non-native and native ranges to investigate questions pertaining to population structuring and reproductive ecology at previously unattainable scales.
Natural history collections play a crucial role in biodiversity research and museum specimens are increasingly being incorporated into modern genetics-based studies. Sequence capture methods have proven incredibly useful for phylogenomics, providing the additional ability to sequence historical museum specimens with highly degraded DNA, which until recently have been deemed less valuable for genetic work. The successful sequencing of ultraconserved elements (UCEs) from historical museum specimens has been demonstrated on multiple tissue types including dried bird skins, formalin-fixed squamates, and pinned insects. However, no study has thoroughly demonstrated this approach for historical ethanol-preserved museum specimens. Alongside sequencing of “fresh” specimens preserved in >95% ethanol and stored at -80 ºC, we used extraction techniques specifically designed for degraded DNA coupled with sequence capture protocols to sequence UCEs from historical museum specimens preserved in 70–80% ethanol and stored at room temperature, the standard for such ethanol-preserved museum collections. Across 35 fresh and 15 historical museum samples of the arachnid order Opiliones, an average of 345 UCE loci were included in phylogenomic matrices, with museum samples ranging from 6–495 loci. We successfully demonstrate the inclusion of historical ethanol-preserved museum specimens in modern sequence capture phylogenomic studies, show high frequency of variant bases at the species and population-level, and from off-target reads successfully recover multiple loci traditionally sequenced in multi-locus studies including mitochondrial loci and nuclear rRNA loci. The methods detailed in this study will allow researchers to potentially acquire genetic data from millions of ethanol-preserved museum specimens held in collections worldwide. This article is protected by copyright. All rights reserved.
Abstract. New study systems and tools are needed to understand how divergence and speciation occur between lineages with gene flow. Migratory birds often exhib
Determining species distributions can be extremely challenging but is crucial to ecological and conservation research. Environmental DNA (eDNA) approaches have shown particular promise in aquatic systems for several vertebrate and invertebrate species. For terrestrial animals, however, eDNA-based surveys are considerably more difficult due to the lack of or difficulty in obtaining appropriate sampling substrate. In water-limited ecosystem where terrestrial mammals are often forced to congregate at waterholes, water and sediment from shared water sources may be a suitable substrate for non-invasive eDNA approaches. We characterized mitochondrial DNA sequences from a broad range of terrestrial mammal species in two different African ecosystems (in Namibia and Tanzania) using eDNA isolated from native water, sediment, and water filtered through glass fiber filters. A hybridization capture enrichment with RNA probes targeting the mitochondrial genomes of 38 mammal species representing the genera/families expected at the respective ecosystems was employed, and 16 species were identified, with a maximum mitogenome coverage of 99.8%. Conventional genus-specific PCRs were tested on environmental samples for two genera produced fewer positive results than hybridization capture enrichment. An experiment with mock samples using DNA from non-African mammals showed that baits covering 30% of non-target mitogenomes produced 91% mitogenome coverage after capture. In the mock samples, over-representation of DNA of one species still allowed for the detection of DNA of other species that was at a 100-fold lower concentration. Hybridization capture enrichment of eDNA is therefore an effective method for monitoring terrestrial mammal species from shared water sources. This article is protected by copyright. All rights reserved.
Understanding the evolutionary mechanisms that affect the genetic divergence between diadromous and resident populations across heterogeneous environments is a challenging task. While diadromy may promote gene flow leading to a lack of genetic differentiation among populations, resident populations tend to be affected by local adaptation and/or plasticity. Studies on these effects on genomic divergence in non-model amphidromous species are scarce. Galaxias maculatus, one of the most widespread fish species in the Southern Hemisphere, exhibits two life histories, an ancestral diadromous, specifically, amphidromous form and a derived freshwater resident form. We examined the genetic diversity and divergence among 20 estuarine and resident populations across the Chilean distribution of G. maculatus and assessed the extent to which selection is involved in the differentiation among resident populations. We obtained nearly 4400 SNP markers using a RADcap approach for 224 individuals. As expected, collections from estuarine locations typically consist of diadromous individuals. Diadromous populations are highly differentiated from their resident counterparts by both neutral and putative adaptive markers. While diadromous populations exhibit high gene flow and lack site fidelity, resident populations appear to be the product of different colonization events with relatively low genetic diversity and varying levels of gene flow. In particular, the northernmost resident populations were clearly genetically distinct and reproductively isolated from each other suggesting local adaptation. Our study provides insights into the role of life history differences in the maintenance of genetic diversity and the importance of genetic divergence in species evolution.
The Neotropical region represents one of the greatest biodiversity hot spots on earth. Despite its unparalleled biodiversity, regional comparative phylogeographic studies are still scarce, with most focusing on model clades (e.g. birds) and typically examining a handful of loci. Here, we apply a genome-wide comparative phylogeographic approach to test hypotheses of codiversification of freshwater fishes in the trans-Andean region. Using target capture methods, we examined exon data for over 1,000 loci combined with complete mitochondrial genomes to study the phylogeographic history of five primary fish species (>150 individuals) collected from eight major river basins in Northwestern South America and Lower Central America. To assess their patterns of genetic structure, we inferred genealogical concordance taking into account all major aspects of phylogeography (within loci, across multiple genes, across species and among biogeographic provinces). Based on phylogeographic concordance factors, we tested four a priori biogeographic hypotheses, finding support for three of them and uncovering a novel, unexpected pattern of codiversification. The four emerging inter-riverine patterns are as follows: (a) Tuira + Atrato, (b) Ranchería + Catatumbo, (c) Magdalena system and (d) Sinú + Atrato. These patterns are interpreted as shared responses to the complex uplifting and orogenic processes that modified or sundered watersheds, allowing codiversification and speciation over geological time. We also find evidence of cryptic speciation in one of the species examined and instances of mitochondrial introgression in others. These results help further our knowledge of the historical geographic factors shaping the outstanding biodiversity of the Neotropics.
Ann Arbor, MI 48103
(d/b/a Daicel Arbor Biosciences)
All Rights Reserved.